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INTRODUCTION AND SUJ:v1MARY. 

In this work we consider the model 

( l) 

where aq f 0 and we often assume that a
0 

= 1. The E 1 s are inde­

pendent normal random variables with zero expected values and constant 

common variances. The E1 s are unobservable, the y1 s are observable 

and the a's are constants (parameters). For purposes of theoretical 

analysis, we take t to range in the set of integers, so that (l) 

defines a stationary stochastic process, while for purposes of statistical 

inference we consider a finite set of equally spaced sample values, for 

t = 1,2, ••. ,T; in either case we call (l) the moving average model. 

We call q (q ~ 0) the order of the moving average, and in many cases 

the statistical arguments require that the a's be such that the roots 

a zq + a q-l 
0 lz of the associated polynomial equation + ••• + (), = 0 

q 
be 

less than one in absolute value. 

The importance of the moving average model for time series analysis, 

in which case t is interpreted as time, stems from several facts. Among 

them we note the following: 

(a) In a variety of fields of application, the formulation of 

reasonable statistical models leads to moving average schemes, or more 

complicated versions of them. For several examples see Nicholls, Pagan 

and Terrell (1973). One may ascribe part of the potentiality-of the 

moving average model in these situations to its structure, which postulates 

linear combinations of current and past error terms to explain the random 

part of the data. 
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(b) The autocovariance sequence has zero values for lag lengths 

ex:eeeding q. This may be a reasonable hypothesis on which to model 

empirical phenomena. 

(c) The spectral density function is a real-valued trigonometric 

polynomial. As such it can approximate the spectral density function 

of a wide class of stochastic processes or time series. 

(d) Due to the relation between moving average and autoregressive 

models, which we consider in some detail in Chapter 1.? the moving average 

model may on some occasions provide a competing frame11rork with similar 

properties to that of the autoregressive model and less parameters to 

be studied statistically. This is important because the linear depen­

dence of a time series on its own past values provides another empirically 

attractive model. 

(e) The moving average model is a simple case of a mixed model (auto­

regressive with moving average residuals). Mixed models are very flexible 

tools to study time series empirically.? and provide a general approximation 

to many stochastic processes, since they have rational spectral densities. 

However their statistical analysis has proved very hard.? due mainly to the 

2resence of the moving average part. 

These reasons and others; have witnessed in recent years a growth of 

proposals to estimate the parameters of (1). Several of these will be 

reviewed in Section 1.4.? after some notation is developed. It will then 

be pointed out that there are mathematical difficulties in maximum likeli­

hood and least squares estimation, that efficient algorithms need be 

developed. if one is to follow one of these approaches.? and that some 

results are already available in the area. 
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On the other hand some rt analog" or intuitive estimators were shown 

to be highly inefficient. The search for asymptotically efficient esti-

mators led to consideration of procedures that operate in two stages. 

The mathematical theory for these is also complicated~ and most of our 

efforts are devoted to provide proofs for two existing proposals of this 

type. Besides filling in a gap in the literatureJ we try to gain insight 

into the estimation problem from this basis. 

In Chapter l we define the model) derive some of its probabilistic 

properties and deduce two representations related to the autoregressive 

model and several alternative parametrizations. The last part of the 

chapter contains a brief review of some existing estimation procedures. 

In Chapter 2 we consider the possibility of using k sample auto-

covariances (k ~ q) to estimate the parameters of (1). Walker (1961) 

studied the statistical properties of a proposal of his when k is treated 

as fixed and T ~@0. His conclusions and examples show that the method 

is endowed with good statistical properties. Under his approach the 

asymptotic distribution of the estimators depends on k~ by studying 

the effect of k on the parameters of the distribution; one is guided 

in the selection of a particular value of k in a practical estimation 

situation. 

A different approach to the theory is to let k ~oo as well as 

T ~ ooJ and then find the cond.itions that give consistency.» asymptotic 

norw~lity and efficiency. This is done in Chapter 2 for the case of 

q = 1. It is shown (Theorem 2.3) that if k = k(T) dominates log T 

and is dominated by T1/ 2, then the estimator proposed by Walker is 

consistent and asy1nptotically efficient. (That is 7 it achieves the 

3 



asymptotic variance of the maximum likelihood estimator.) In fact the 

consistency is obtained with no condition on k(T) other that it tends 

to infinity with T (Theorem 2.1). 

The approach in proving these theorems involves obtaining an explicit 

form for the components of the inverse of a symmetric matrix with equal 

elements along its five central diagonals, and zeroes elsewhere. The 

derivation of these results, and related material, appears in Mentz ( 1972). 

There exists wide interest in solving the mathematical problem of finding 

these explicit inverses. The technique that gives more useful results 

in our case is to pose difference equations for the components of the 

inverse, and solve them explicitly. 

The main technique used.to prove the asymptotic normality of the 

estimator, is a central limit theorem for normalized sums of random 

variables that are dependent of order k, where k tends to infinity 

with T. 

As a consequence of the study in Chapter 2, an alternative form of 

the estimator is presented in Chapter 3, which facilitates the calcula­

tions and the analysis of the practical role of k, without changing the 

asymptotic properties. 

In Chapter 4 we consider a different approach due to Durbin (1959), 

based on approximating the moving average of order .q by an autoregression 

of order k ( k ~ q). This is also an appealing estimation proposal,. be­

cause the necessary computations involve the solution of standard systems 

of linear equations, and the method shows good statistical properties. 

The paper by Durbin does not treat in detail the role of k in the 

parameters of the limiting normal distributions, so that Chapter 4 is 

4 



devoted to this topic for the case of q = 1) when k is treated as 

fixed and T ~co. We derive the probability limit (Theorem 4.1) and 

the variance of the limiting normal distribution of the estimator 

(Theorem 4.2); and compare them with the desired values: the parameter 

in ( 1) and the asymptotic variance of the maximum likelihood estimator. 

The differences turn out to be exponentially decreasing functions of k) 

confirming some of the examples presented by Durbin. 

The parallel analysis with k = k(T) was also attempted.:> but at 

this point no complete proofs are available. Instead we prerent the 

limit as k ~oo of the parameters of the limiting distributions as 

T ~co (Theorems 4.8 and 4.9). In the case of the parameter of interest, 

these limits coincide with the desired values mentioned above. 

Finally a modification of Dur'Qin',s proposal by Anderson ( 197lb) is 

studied in detail in Chapter 5; also for the case of q = 1. The modifi­

cation simplifies the first stage of the procedure by using some of the 

conditions derived from the Qnderlying moving average model. 

5 



L THE MOVING AVERAGE MODEL 

l.l Introduction. 

We consider the time-series model 

( l.l) 

where 

( 1.2) 

( 1.3) 

il O:.Et . ' j~O J -J 

l ' 

0: _j 0 . q I , 

the sequence {Et} is composed of independent normal random variables, 

and for all choices of t 

( 1.4) 0 ' 

and 

( 1.5) 

where 
2 

0 < cr < C10· Further the associated polynomial equation 

( 1.6) 0 

has all its roots less than one in absolute value. 

If we think of t as ranging in the set of integers { ••• , -1, 0, 

1, ••• }, then (l.l) defines a wide-sense stationary stochastic process, 
/ 

even if the E Is 
t 

are not identically distributed. The process becomes 

strictly stationary when we assume that the Et's are identically distri­

buted. We call (l.l) a moving average of order q. 
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We note that when q = l, (l.l) reduces to the simple form 

( 1.7) 

and the conditions (1.2) and (1.3) together with the condition on the 

roots of ( 1.6) reduce to 0 < la:l < l. We shall pay much attention to 

(1.7) since the mathematical manipulations simplify considerably in 

this case. 

( 1.8) 

( 1.9) 

From (l.l) it is easy to see that 

for all t • 

The autocovariances (or simply covariances) of the 

a ( s) 
y 

2q-l sl 
a l aJ. aJ.+Isl ' 

j=O 

0 ' 

Is I < q , 

lsi > q • 

y IS 
t 

are 

As expected, since {yt} is wide-sense stationary, the coyariances 

do not depend on the time t. Equation ( 1.9) is written in full, for 

s :=:: o, as 

7 



( 1.10) 

(J ( 0) 
y 

(J ( l) 
y 

. 
(J ( q) 

y 

2 2 2 
a (Hex +···+ex), 

l q 

2 a ( ex
1

+o:
1

ex
2 

+ ••• + a: ex ) , 
q-1 q 

2 
a ex ' q 

cr(s)=O, 
y s = q+l ' q+2, •••• 

The autocorrelat±ons P (s) are defined by y 

( l.ll) lsl == 0,1,2, •••• 

For example, when q. = l equations (1.10) reduce to 

(1.12) 

. and equation ( 1.11) gives 

( 1.13) 

(J ( 0) 
y 

cr2( 1+0:2) 

(J ( l) 
y 

(J ( s) 
y 

p ( l) 
y 

2 
a ex 

0 ' 

P (s) = o, 
y 

' 

' 

s == 2.,3, ••• ' 

lsI == 2,3, o o o o 

For ex real the function ex/(l+o:
2

) attains its absolute maximum when 

ex = l, and its absolute minimum when ex == -1. It then follows that for 

lexl < l 

8 



(1.14) 

For arbitrary q the autocorrelations are 

( 1.15) P ( s) 
y 

q-lsl 
L a.cx.+l I 

j=O J J s 

r ex: 
j=O J 

) Is I 0' l, 0 • 0) q ) 

0 ' I sl > q , 

and the correlogram (gra~h of p ( s) 
y 

against the time differences or 

· 
11 lags") has the typical shape: it presents possibly nonzero values up 

to lag q, and zero values from there onwards. 

1.2 Two Exact Representations. 

For simplicity we illustrate the main ideas with the case q = L 

From (1.7), by successive substitutions we obtain 

( 1.16) 

that is, 

(1.17) 

Et yt-Q €. ~ t-.J.. 

9 



where we define 

( 1.18) 

If we think of a finite set y1,y2 .:> ••• ,yT of random variables 

corresponding to model (1.7), then equations (1.17) and (1.18) above 

hold.for t k+l, ••• .:>T and any k such that 1 < k < T-1. If we 

thinkof t as ranging in the whole set of integers, then the equations 

hold for all t, and k any natural number. 

It is clear that (1.17) and (1.18) constitute an alternative repre­

sentation of (1.7). Its importance lies in the fact that (1.17) has the 

* form of an autoregression,;. its problem lies in that the Et,k are not 

uncorrelated.:> when the Et areia.s i6:iL o(lLL). 

We determine the first- and second-order moments of the 

From (1.18) and (1.4) it is clear that 

( 1.19) 

for all relevant t and k. Further 

~ 2 + (:;.a:)2(k+l) t: 2 
~Et . ~ Et-(k+l) 

( 1.20) 

l(l+a2k+2) ; 

* that is, E has a larger variance than E· The covariances are 

10 



"er=* E* 
~ -t,k t+s.:> k 

g [ct -(-a )k+lct- (kil J [ Et+s -( -a)k+\t+s-( k+lJ 

( 1.21) 
-( -a)k+l [ ~0t0t+s-(k+l) + €'0 t-( k+l) 0 t+s] 

, cl( -c:x)k+l = ( -l)kiak+l .:> Is I k+l , 

0 ' otherwise • 

This result can be put in a clear visual context by introducing 

some matrix notation. Let us define the vectors 

( 1.22) * - ( ~~+l,k) E - • 
""k • 

* ET,k 

Then from (1.3) and (1.4) we deduce that 

( 1.23) 

where the prime denotes matrix transposition.:> and ~ is the identity 

matrix of order T. Similarly (1.21) can be expressed as 

( 1.24) * *' 2 2( )k+l ff<£k £k = cr hr-k- cr -ex Q;k+l .:> 

where the matrix Qk+l is (T-k) x (T-k), and has ones along the 

diagonals in places (k+l) above and below the main diagonal, and 

zeroes elsewhere; if 

matrix, then 

(k+l) 
gij denotes the i, j-th element of this 

ll 



.( 1.25) 

(k+l) 
g .. 
~J l ' k+l ' 

0 , otherwise • 

. Another exact representation may be obtained by letting k tend to 

infinity. We now think of {yt} as a stochastic process with t ranging 

in the set of integers. When q = l, from (1.17) and (1.18) we have that 

( 1.26) 
2k+2 2 

ex E' E:t -( k+ l) 
2 2k+2 a ex , 

which converges to zero as k ~oo, since lc:xl < 1. aence we write 

k . 
( 1.27) E:t =lin L (-a)Jyt-· 

. .K.~oo j=O J 

. in the sense of convergence in mean square of sequences of random variables. 

For general q we may proceed along the same lines. The details are 

given in Appendix A. 

1.3 Alternative Parametrizations. 

The moving average ( 1.1) is parametrized by 
2 

a and the coefficients 

. c:x1, ••• ,c\. For some purposes the first q+l equations of (1.10) provide 

an alternative useful parametrization in terms of the covariances a ( 0), 
y 

a (l), ••• ,a (g). From (1.11) it is easy to see that a (o) and the auto-
y y y 

correlations p (l), ••• ,p (q) are an equivalent set of parameters. 
y y 

A general argument to show how to recover the a.'s 
J 

from information 

about the a (j)'s is given in Anderson [(l97la); pp. 224-25]; a practical 
y 

12 



computing routine is given in G. Wilson (1969); a discussion of the 

statistical consequences of using the latter appears in Clevenson ( 1970). 

Some authors prefer to analyze the process ( 1.1) through its spectral 

density.)' which is given by 

2 cr 
2rc 

( 1.28) l 
2rc 

1 
= 21L 

1 
21L 

[ o:.eiwj 2 

j=O J 

r f o:.a.i 
j=O f=O J J 

t 2 Ilsl 
cr 

s=-g_ j=O 

f cr (s)e iws 
y s=-g_ 

e iw(j-j 1
) 

ajaj+lsl 

cr ( 0) r P ( s) iws e y y s=-g_ 

-rc < w < rc 

iws letting • •I e s = J -J 

using (1.9) 

Hence f (w) can be expressed as a function of either one of the y 

sets of parameters introduced above. Since the spectral density in this 

case satisfies the 11 inversion formula19 

( 1.29) cr (h)= Jrc cos(wh) f (w)dw; 
Y -rc Y 

in principle we can also recover any of the sets of parameters once f (w) 
y 

is given. The practical problem of recovering values of parameters in some 

set from information about the spectral density.)' gives rise to an important 

avenue of estimation procedures for this model. Some of these are reviewed 

in Section 1.4. 

13 



1.4 Some Estimation Procedures. 

In this section we review briefly some of the more important contri-

butions to the problem of estimating the parameters of the moving average 

model ( l.l). Reviews of estimation procedures are centained in Hannan 

(1969) and Walker (1961). 

Te organize our exposition we shall. attempt to separate the various 

proposals into categories according to the nature of the basic ideas 

involved. Since most contributions use tools corresponding to several 

lines of approach, the categories will in this sense be far from exclusive. 

Throughout this section we consider a sample y1,y2, ••• ,yT from 

(l.l). For the sake of simplicity many remarks are referred to the case 

q.= l, or illustrated by means of it. 

1.4.1 Early Work. 

Wold's book (1954) is a good starting point for this review, since 

he appears as the first in attempting to estimate the parameters of a 

moving average process [cf. ( 1954), pp. 150-151]. His suggestion can be 

interpreted in our notation as follows: From (1.28), letting iw 
z = e , 

we have that 

( 1.30) 2 
a f a"zj 

2 
= a

2( ~ a.zj)( f a.z -j) 
j=O J j=O J j=O J 

The p (s)'s can be estimated.by 
y 

( l-31) = r -s,T 

c 
sT 

J 
cOT 

14 

a (0) ~ p (s)zs • 
y s=-q y 

s = 0,1,2, ••• ,q' 



A 
and the estimators a. ::;olved for in 

J 

( 1.32) 

leads to 

( 1.33) 

2 
(J 

(J ( 0) 
y 

and if we let -1 
h = z+z , ( 1.30) 

p ( 1) 
= ...,Yb........._ +1+ P (1) z 

z y l+p ( l)h ) 
y 

so that the desired estimator is obtained by solving 

the only admissible root is 

( 1.34) 
1 - /1-1+( r 1T)

2 

2rlT 

This estimator is consistent, but asymptotically inefficient compared 

with the maximum likelihood. estimator [see Whittle ( 1953)]. 

The inefficiency of (1.34) as an estimator of a can be ascribed.to 

that of as an estimator of p ( 1). 
y Hence it pays to try to improve 

the estimation of the autocorrelations; some suggestions in this direction 

are reviewed in sections 1.4.2 and 1.4.5 below. 

For general q, the problem of solving (1.32) for the a.'s has been 
J 

considered already in section 1.3. See also Wold [(1954), PP• 123-132, 150-174]. 

15 



1.4 .2 Maximum-Likelihood Estimation. 

When the E; I S 
t in ( 1.1) are normal, the joint distribution of the 

vector ;:z, = (y1, ••• ,yT)' generated by the moving average process is 

( 1.35) 

where .E == ~yy' • "' ,..,,...., 
Since I: is a function of the a. 1 s 

J 
(and. of 

2 
(J ), (1 .• 35), 

taken as a function of the parameters for y fixed, is the likelihood.function ,..., 

of the observations. 

The possibility of finding the maximum likelihood estimators of the 

a.'s was studied by Whittle (1951), (1952), (1953). There are ·difficulties 
J 

in finding explicit forms for the estimators, which can be attributed.to the 

-l 
complicated nature of the inverse matrix ~ • 

For q == l and using some approximations, it can be shown that the 

maximum likelihood estimator approximately minimizes 

( 1.36) 1 l [ T 2 T-l T-u ] t f.- ;l, ~ --2 r Yt + 2 L ( -a)u l YtYt+u 
l-ex t=l . u=l t=l 

; 

see e.g. Durbin (1959). The estimate aT can then be found by means of 

some search procedure, e.g. using a computer program. For most values of 

q . the search for the minimizing set of a.'s may be quite cumbersome, 
J 

as has been noted repeatedly in the literature. 

The asymptotic theory of the maximum likelihood estimators was 

explored by Whittle (1951), (1952), (1953). He have arguments to support 

his claim that, asymptotically, the same behavior as in the case of 

16 



independent sampling from a 11 regular11 distribution will be achieved. It 

may be worthwhile to review 1;Jlaittle1 s initial contributions~ since some 

confusion seems to exist in the literature. 

Whittle [(1953~ pp. 426-427)]J argued towards the consistency of the 

maximum likelihood estimators; he then considered the distribution of the 

maximum likelihood estimators and noted that it is 11 
••• distributed in the 

same fashion as if the sample material had consisted of [T] independent 

variates with [a given] freg_uency ;function p(x) ••• 11 so that 11 
••• with 

the aid of this equivalence, esti:rnator properties such as efficiency, etc"" 

may be established simply by referring back to existing theorems for 

independent series" (pp. 427-428). This part of his work must be regarded 

as providing an informal argument~ cf. Hannan [(1960)J footnote on page 46]. 

Finally Whittle shows that the maximum likelihood estimators are the 

consistent estimators with minimum asymptotic variances among th0se satisfying 

a certain estimating equation that is basic in his work [ ( 1953) ~ equation 

(2.8)., page 428]. 

There has been considerable work to give formal detailed proofs of 

these and other related statements. Among others see Whittle (1961); 

Walker ( 196~-)" who gives a proof of consistency and asymptotic normality; 

Ibragimov (1967), who treats consistency; Dzhaparidze (19'70)., who treats 

the closely-related case of a continuous time parameter, and references 

therein. 

One important consequence of these researches is that Qnder suitable 

regularity conditionsJ the maximum likelihood estimators of the 0:0 is 
J 

behave 

asymptotically like similar estimators for the parameters of an autoregressive 

model of the same order. 
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Under the present heading we also include Walker's (1961) proposal) 

that he regards as "o o. a modification of Whittle's method which enables 

[s0me of its] difficulties to be avoided to a .large extent) and. als0 usually 

requires much less compui:ati0n" (page 345) o He uses the maximum likelihood 

approach to search.for the asymptotically efficient estimators of the auto-

correlations P ( 1); ••• ; P ( q); and the sample information is used through 
y y 

r JT; j = 1) 2; ••• :; q+k,)l k ;;: 1. .Walker's proposal will be studied in some 

detail in chapters 2 and 3. For a review of his work see als0 Anderson 

[( 197la):; Section 5. 7 .2]. Walker1 s paper also contains a review of 

Whittle's contributions in this area. 

The estimation of the autocovariances a (s); s = O:;l;•••;q by 
y 

maximum likelihood has been approached also from the point of view of the 

relation between this problem and that of estimating a covariance matrix 

of special structure in multivariate normal sampling. Anderson (197lb); 

.(1973) derived an iterative procedure which attempts to obtain efficient 

estimates of the a (s)'s. 
y 

Recently Box and Jenkins (1970) presented computational approaches to 

find the :rmximum likelihood estimates as will be mentioned below. 

1.4o3 Least-Squares Estimation. 

Closely relatedto the maximum likelihood approach is the least-squares 

estimation procedure for this case. Least squares estimation of the ex 0' s 
J 

leads to nonlinear equations:; which can be solved by special computer techniques; 

see e.g. Pierce (1970). This author studied the asymptotic properties of the 

least squares estimates 0f the parameters of a moving average; and one main 
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conclusion is that they are those of the least squares estimates of the 

parameters in a corresponding autoregressive model of the same order 7 

i.e. the same kind of duality we noted for the maximum likelihood estimators. 

The connection is not surprising since (1.36), the approximate equation 

to be solved for the maximum likelihood estimators, is also the least squares 

estimators criterion equation; see Walker (1964), or Box and Jenkins 

[(1970), Chapter 7]. These latter authors analyze in detail the computa-

tional problems associated witp ( 1.36) 7 and also present an analysis of 

the exact likelihood function. One can say that for finite samples, the 

difference between using (1.36) and the exact likelihood arises because 

one approximates and further neglects the determinant in (1.35) 7 

which appears in goipg from the independent E v S 
t 

to the yt' s. 

1.4.4 Estimation Based on the Finite Autoregressive Approximation. 

In section 1.2 it was shown that a moving average process adxnits a 

representation as a finite autoregression with correlated residuals. 

D~ITbin (1959) used these ideas to derive an estimation proced1rre for the 

a.'s; his work will be considered in detail below. For a review of this 
J 

work see Anderson [(l97la) 7 Section 5.7.2]. 

1.4.5 Estimation Through the Spectral Density. 

A group of papers has been written in the area, where the main stress 

lies in looking at the parameters as forming the spectral density ( 1.28); 

alternatively one says that one resorts to the Fourier transform of the 

available data. Some of these suggestions have resulted in rather complicated 
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expressions, frequently to be solved by means of the computer, but some 

seem to suggest w~ys for estimation in more general cases: mixed models, 

vector cases, etc. Most of the procedures are iterative, and aim at 

obtaining (asymptotically) efficient estimators. 

Durbin (1961) presented what he calls. rra spectral form" of his 

earlier suggestion, the one we reviewed in section 1.4.4. Hannan (1969), 

(1970), and Clevenson (1970) also have papers in this area~ the former 

concentrates on the ex.' s and the latter on the a ( s)' s. For a recent 
J y 

review of this work see Parzen (1971). 
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2 • ESTIMATION BASED ON A FINITE NUMBER OF SAMPLE AUTOCORRELATIONS. 

ASYMPTOTIC THEORY WHEN THE NUMBER IS A FUNCTION OF SAMPLE SIZE 

2 .1 Introduction. 

Walker (1961) proposed a procedure to estimate the parameters of a 

moving average model of order q. He considered the vector of auto-

correlations p = ( p ( l) j ••• J p ( q))' • 
~ y y 

With the notation used by Anderson [(l97la), Section 5.7.2].1 the 

final form of the estimator is 

(2 .l) (2) 
Lr . 

If IT denotes the vector whose components are the first k sample 

autocorrelations (q < k < T) defined as in Section 1.4.1 by 

(2.2) 

where 

(2 ·3) 

then ~ is partitioned as 

components, and ~2 ) has 

j 1,2, ••• ,k J 

j 0; l, ••• J k ' 

! - ( (l)' (2)') 
~ - IT ,;sT where q 

k-q components. ~ = ~(£) is the covariance 

matrix of the limiting normal distribution ...(T (;r,~l)_.e) [see e.g. 

Anderson (l97la), Section 5·7·3].? and it is partitioned to conform with 

as 

(2.4) 

21 



by ~(r~1 )) we mean (2.4) with the components of £ replaced by the 

corresponding ones of ~l). Note that pliiTL r T = P (s) = o, if 
. - .L '1'~00 s y 

s > q. 

When 

(2 ·5) ~(r) 

(2.6) 

q = l, W(r( l)) 
"'NT 

2 4 l-3r +4r 

2 
2r(l-r ) 

2 r 

0 

0 

k-1 
r -2r(l-r

2
) 2 

j=l 

where we have denoted 

written as 

(2.7) 

be defining 

~(rlT) and is given by 

2 2 2r(l-r ) r 0 0 0 

l+2r2 2 2r r 0 0 

2r l+2r2 2r • 0 0 

0 0 0 l~2r2 2r 
"' 0 0 0 2r l+2rc::. 

Note that (2.6) can also be 

k-1 

j~O ~(j) rj+l,T ' 

22 
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~(o) 1 J 

(2.8) 
2 l. 2 2 . 

. ~( j) = - 2r( l-r )w J - r w J ; j 

Walker developed the asymptotic theory for this proposal when k is 

treated as fixed. In the following sections we present the corresponding 

as~~~otic theory when k = ~J a function of the series length T, such 

that lim..... k = oo. We restrict our attention to the case ~ = 1. 
'1'-)oo T 

conjectured by Walker [ ( 1961) .l> page 353 J that such a theory could be 

It was 

developed; essentially by means of the tools we use below, except that the 

components of 
-l 
~2 will be evaluated explicitly. 

2.2 Evaluaticm of the Components in Two Rows of the Inverse Matrix .• 

From ( 2. 4) and ( 2. 5) 1-1e see that 

(2.9) 

and the G. matrices were introduced in Section 1.2. From now on, for con­
. ""'J 

venienceJ> we take the order of }:!,22 to be kT (sometimes denoted by k) 

-l instead of kT-1. The evaluation of the components of }:!,22 is treated in 

Mentz [(1972).9 Section 4]. To evaluate (2.6) we only need the first two 

rows of 
-l 

.li22' 
symmetric. Let 

(2.10) 

so that 

(2.11) 

or equivalently the first two columns since Xi22 is 

2 a = l+2r ; b 2r ii 
2 

c = r 
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We assume throughout that lrl 
to satisfy. 

l 
< 2' a condition that p ( l) 

y 
was shown 

The associated polynomial equation. that corr.esp0rtds to this problem is 

(2ol2) 4 3 2 ex + bx + ax + bx + c = 0 , 

and has roots 

(2ol3) - l + Jl-4r2 2r 
xl = x2 2r ' I 2 - l- l-4r 

-l- /l-4r
2 2r 

x3 x4 == 2r 
-l + fl'-4r

2 
(2ol4) 

Hence (2.12) has the roots each with multiplicity two, where 

It then follows that the components ij w 
-l 

or ~22 are given by 

(2 ol5) w 
ij 

l, 0 0 0' ~. 

The constants c ( 0) 
s J in ( 2 ol5 ) .)) for columns j are evaluated 

.from the matrix equations 

(2 ol6) H(l)"(1)' k£(2)"(~, 
where Q.(j) = (c1(j), c2(j), c

3
(j), c4(j)),1

• In terms of partitioned 

matrices, the solutions of (2.16) are 
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( 2 .1.7) 

( 2.18) 

) 

-1 ( ) 
A . .-, 
"'12 ;;;::,1 

&.,r-, 0 
··c.c. ""' 

£(2) 

12 
a 

22 
a 
32 a 
42 

a 

The components of ~ll are 

2 + 3 - (r/2) ( /l-4r
2 - 3) all ax1 + bx1 

cx
1 

~ 

al2 ax1 + 21 2 + :<; 2 
:DXl .)C l - {r/2)(/l··4r

2 
+ 1) 

(2.19) 

bx1 + ax~ + bxi + 
4 2 

a21 = cx
1 - r :J 

2 2 4 4 
a22 = bx., + 2ax

1 
+ 3b 1 + cx1 0 . 

j_ 

~ 

j 

ll a 
21 

a 
31 a 
41 

a 

The components of ~12 are of the same form as those in (2,19),with x
1 

-1 
replaced by x1 • The components of ~l are: 

(2.20) 
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The components of ~2 are of the same form as those in (2.20) 1 with x
1 

-1 
replaced by x1 • 

By the rULes of partitioned inversion 

( 2 .21) -1 )-1 A2l = -1 ll 
- ~12 ~2 ~l ; '"" - ~2 ~21 .f1 I 

and the matrices in (2.21) can be written as 

(2.22) 

where 

(2.24) 

( 2.25) 

1 
/::::, 

The b .. ; c. ,J d .. ; m .. ; n .. ; s .. ; t .. ; and h. in expressions (2.22) 
~J l.J . lJ lJ lJ lJ lJ l 

- (2.25), are either linear combinations of the original defined in (2.19) a .. 
lJ 

and (2.20) 1 that do not involve ~' or at most f·unctions of ~ through 

factors like (~-s)/~ for s = 1»2 or 3· Note however that in general 

they are random variables, functions of r 1T. 

For our purposes there is no need to specify the C (j)'s (j=l1 2) in s 

greater detail. 
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In the case of q = lJ from (2.6) or (2.7) we see that to prove the 

consistency of Walker's estimator of (J ( 
y 

it suffices to show that 

~=l 

(2.26) pli~~oo l ~(j) rJ"+l,T-- O ~ 
j=l ; 

this will be done now. 

Theorem 2.1. Let yt satisfy equation (1.'7) for t = ... ; -1;0;1,:~•••} 

where 0 < /a/ < l and the E are independent; normal with eE, = 0; t I<> "G 

2 2 2 
~Et = a (O<a <co) for all t. 

of (yt} at times + = 1)2poo;T is "' 

fQnction of T (T ~ k+l).? satisfying 

(2.27) 

(2.28) 

Proof. Let us take the w ij 

Suppose that a 

available 2 

00 • 

p ( 1) 
y 

and 

set of observations 

that k=k is a 
T 

in the definition of the 

estimator.? as those evaluated in Section 2 when g22 is taken to be of 

order kT.? sL'lce their difference v-Ii th those when ~2 is of order 

~-1 is negligible as T ~oo. Then for j 

that 
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2 l 0 2 2° - ~(j) = 2r (1-r ) w J + r w J 

(2.29) { 
2 2 ;1. -j + 2r (1-r )[c

3
(1) + jC4(l)] + r [c

3
(2) + jc4(2)~ x1 

= {2r (l-r2)(all + j a2l) + r2 (al2 + j a22)} xi 

+{ 2r (l-r2)(a31 + j a4l) + r2 (a32 + j a42)} x~j j 

where the 
ij 

a are given in .(2 •. 22) ahd (;2 .. 23). 

Replacement in (2.26) gives two corresponding terms. The one associated 

with the second braces of (2.29) is easily shown to converge to 0 in 

probability.)> because the ij a have k x
1 as dominating factor; see (2.22) 

and ( 2 .23). The term associated with the first braces of ( 2 .29) is 

handled differently: for any fixed m;:mber of initial summands in it" it 

can be used that plim..... r 0 = 0 for j > l.)l while for large enough j 
'1'~00 J 

the exponentially declining xi is relevant.)> even considering that the 

number of terms increases with T. The details are given in Section 7.1. 

2.4 Asy~ptotic Normalit~. 

In this section we prove that \~Then the estimator of P (l) proposed y 

by Walker is based on k sample autocorrelationsJ and k is taken to be 

a function of T.l' it still has a limiting normal distribution. We first 

state two lemmas. 

Lemma 2 .1. Let 0 < a < l.l' T = 1,2.)1... and kT be a fu.rJ.Ction of T 

such that lim_ l~ = oo. Let n and m be positive constants. Then 
'1'~00 '1' 

a necessary and sufficient condition .that 
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( 2 ·30) l " Tn mk lll.L ·aT 
'1'----)oo 

0 

is that 

( 2 ·31) liii.L log T 
'1'----)00 ~ 

0 • 

Lemma 2.2. Let the sequence of random variables [ZT} converge in distri­

bution to the random variable z. Suppose that the sequence [YT} con­

verges in probability to 0. Then 

(2.32) 

These lew~as are standard results in analysis and probability theoryy 

respectively) and will be proved directly only for the sake of completeness. 

The proofs constitute Section 7.2. 

The theorem we shall prove in this section is the following: 

Theorem 2.3. Let the conditions of Theorem 2.1 hold.)' together with 

( 2 ·33) lim 
~co 

0 ) 
~ 

T 
0 • 

Then JT ($T-py(l)) has a limiting normal distribution with parameters 

0 and ( 1-a2 )3 / ( l+fi ) 
4 

• 

Proof. The proof. of the theorem will be done in five parts;> as follows: 

Part 1. (Replacement of sample autocorrelations by sample autocovariances). 
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( 2.34) 

where we define 

( 2 ·35) 
CY ( l) 

m_(~l) = -~ = - p (l) 
'1' @' __ ( 0) y 

y 

In the last line of ( 2.34), we can replace c0T by Py( 0) = pli~~oo cOT' 

without affecting the resulting limiting distribution [ cf. Rao, ( 1965); 

Section 6a.2]. Also note that pli~~oo fT ( l/T)[ cry( 1)/ c0T] = 0. 

Hence the conclusion of this part of the proof is that JT (ST-py(l)) 

has the same limiting distribution as 

Part 2. (Simplifying the ~(j)'s). 

We have that m.r(-1) = - py(l); mT(o) 1, and ~(j) is given by 
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(2.29) for j = 1,2, ••• ,~-1. From the argQment in the proof of 

Theorem 2.1 we see that we can v.rritej say, 

(2.37) 

where 0 < A< 2. We want to argue that we can disregard the part .with 
Ak 

x1T T as a factor~ and then find an explicit form for m
1,T(j). This 

is done in Section 7.3.2. 

The conclusion of this part of the proof is to assert that it suffices 

to find the limiting distribution of (2.36) when each ~(j) is replaced 

by m1,T(j) given by 

j -1 ' 

(2.3.8) 

= XJl.T (1 + J" /l-4r
2). J~ = O.l ••••. k -1. , , , , T 

Here of course r = r 1T and x1T = x1 (r
1
T) are random variables. 

Part 3· (Substitu.ting parameters for random variables in the m
1
,T(j)u s). 

Here we prove that 

(2.39) 

where we used that ~cjT = 0 for j = 2,3, •••• 

Our notation is: r = rlT' P 

x1 = x1(Py(l)) = ~a. Now: 
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m1, T ( j ) - m( j ) ~ xiT [ 1 + j h -4 r ~T ) ··· ii ( 1 + j / l c4p 
2 

) 

(2.40) 

so that the random variables in (2.39) will be taken to. be formed by the 

corresponding two terms. 

The sum over j of the first term is of the form (7.23) treatedin 

k -l 
Section 7 ·3 ·3 j namely IT r oT- j 

.... j 
cj+l,T. Since xJ= ( -cx)j is 

J==.l 
xl l 

summable ( lal < l) ~ the sum over j converges in distribution to a 

normal random variable with zero expected value and finite variance. 

Further /l~4riT ~ )l=4p~( l) as T ~ oo j so that the second summand 

converges stochastically to zero, by Lemma 2.2. In the second term we 

have to deal with 

(2 .• 41) 

or this same expression with weights j(xiT We see that the proof 

will be completed if each such term converges stochastically to zero. We 

treat the case of (2.41) in detail~ since for the other one a parallel 

argument holds. The. algebraic steps are presented in Section 7 .3 .2. 

The consequence of this part of the proof is that instead of (2.36) 

we now must prove that 
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(2.42) t/!i a (o) 
y 

has the limiting normal distribution claimed in the theorem. 

Part 4. (The asymptotic normality). 

Let nT be the random variable in (2.42). Substituting for the 

c jT ~ s from ( 2 o3) of Section 2 .1, we have that 

( 2. 43) 

l 

[T 

where 

(2.44) 

In Section 7·3·3 we argue that (2.43) is asymptotically normally 

distributed with parameters 0 and 

( 2.45) 

Part 5· (The asymptotic variance). 

To complete the proof it suffices to show that in (2.45) 
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(2.46) 

where the expectations in (2.45} are given by 

(2.47) 1 
k.r 
r 

j=O 

kT 
L m(j-l)m(ji~l) 

j'=O 

using the d, ,(s) introduced in expression {7.27) of Section 7·3·3· 
lJ 

The evaluation of 1: is presented in detail in Section 7·3·5· 

The conclusion of Theorem 2.3 can easily be used to prove the 

following:-

" Corollary 2.4. Under the conditions of Theorem 2 ·3 J let aT be defined 

by (1.34) with r 1T replaced by 

normal dist:ri but ion with parameters 0 

Then [T (aT-a) 

and 
2 l-a • 

has a limiting 

Hence we showed that under the stated conditions~ the procedure 

in this chapter achieves asymptotically the variance of the maximum 

likelihood estimator. 
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3. ESTIMATION BASED ON A FINITE NUMBER OF SAMPLE AUTOCORREIATIONS. 

A MODIFI8ATION TO SIMPLIFY THE COMPUTATIONS 

Fremthe argument in Chapter. 2 it fellews that Walker's estimater 

ef p (1) fer the first-erder meving average.)> given in (2.7) as y 

k-1 
(3.1) A. 

p = 
T l 

j=O 

is asymptetically equivalent to the estimator 

(3 .2) 

where 

(3 ·3) j 

and 

(3 .4) 

The modified estimator discards from parts having 

as a factor, and hence differs only slightly from if k is 

moderately large. 

To compute (3.1) Walker [(1961L PP• 347-348], proposed an iterative 

procedure. The form (3.2) is of course much simpler,. and reflects also 

the fact that the necessary components of the inverse matrix 

been obtained in closed form. 
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From a practical point e>f view the form (3 .2) Irl..akes easy the choice 

of k, guided by the degree of numeri\tal approximation that is desired. 

In fact approaches zero fast as j increases; and jxiT increases 

until j reaches a value approximately equal to , (, I I )~1 ~ ·iln X , · ,, lT ~ 
and then 

decreases. Consider the Table 3 .1,: 

Table 3.1 

Values e>f ml.9T(j) for selected values e>f rlT 

J. .05 .10 .15 .20 .25 

1 -.1000000 -.2000000 -._3000000 -.4000000 -.5000000 
2 .0075125 .0302030 .o685482 .1234089 .1961524 
3 -.0005018 - .oo4o612 -.0139772 -.0340895 -.0692193 
4 .0000314 .0005123 .0026761 .oo8854o .0230114 
5 -.0000018 -.0000620 -.0004922 -.0022109 -.0073620 
6 .0000001 .0000073 .oooo88o c .0005372 .0022931 
7 o.ooooooo -.0000008 -.0000154 -.0001279 -.0007003 
8 0.0000000 o.ooooooo .0000026 .0000300 .0002106 
9 o.ooooooo o.ooooooo -.0000004 -.0000069 -.0000626 

10 o.ooooooo o.ooooooo o.ooooooo .0000015 .0000184 
11 o.ooooooo :, ~Q. 0000000 o.ooooooo -.0000003 -.0000053 
12 o.ooooooo o.ooooooo o.ooooooo ().0000000 '· .00000l5 
13 o.ooooooo o.ooooooo o.ooooooo o.ooooooo "':.0000004 
14 o.ooooooo o.ooooooo 0.0000000 o.ooooooo .0000001 
15 0.0000000 ,0<~0000000: ' . 0:~0000000 : O.OOOOQOOi )('0.0000000 



Table 3.1 (Continued) 

J.. .30 ·35 .4o .45 

1 -.6000000 -.7000000 -.8000000 "'·9000000 
2 .2888888 .4049504 ·5500000 ·7353557 
3 -.1259259 'Wo2140023 -·3500000 -.5682477 
4 .0518518 .1072520 .2125000 .4234477 
5 -.0205761 -.0519085 -.1250000 -.3075804 
6 .0079561 .0245097 .0718750 .2192185 
7 -.0030178 -.0113615 -.0406250 -.1539701 
8 .0011278 .0051919 .0226562 .1068903 
9 -.0004166 -.0023457 -.0125000 -.0735060 

10 .0001524 .0010500 .oo68359 .0501521 
ll -.0000553 - .ooo4664 -.0037109 -.0339916 
12 .0000199 .0002058 .0020019 .0229082 
13 -.0000071 -.0000903 -.0010742 - ~'015i363l 
14 .0000025 .0000.394 .0005737 .0102590 
15 -.0000009 -.0000171 -.0003051 -.oo68249 
16 .0000003 .0000074 .0001617 .0045251 
17 -.0000001 -.0000032 -.0000854 -.0029913 
18 o.ooooooo .0000013 .0000450 .0019721 
19 0.0000000 -.0000005 -.0000236 -.0012970 
20 0.0000000 .0000002 .0000123 .0008511 
21 o·.ooooooo -.0000001 -.ooooo64 -.0005574 
22 o.ooooooo o.ooooooo .0000033 .0003643 
23 o.ooooooo o.ooooooo -.0000017 -.0002377 
24 0.0000000 o.ooooooo .0000009 .0001549 
25 0.0000000 0.0000000 .~ .oooooo4 -.0001008 
26 0.0000000 0.0000000 .0000002 .oooo654 
27 o.ooooooo .o.ooooooo .,.ooooool -.oooo4;:;5 
28 o.ooooooo o.ooooooo 0.0000000 .0000275 
29 o.ooooooo 0.0000000 o.ooooooo -.0000178 
30 o.ooooooo 0.0000000 0.0000000 .0000115 

For r 1T negative the values of m1»T(j) are those of Table 3.1 

all taken with positive signs. 

Once the estimating value of r 1 is available» the table can be 

used to decide how many autocorrelations j = 2,3, ••• to include 

in the correction of r 1 given by (3.2). 

The main points discussed in this chapter can be summarized. as 

follows. 
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Theorem 3 .1. Under the conditions of Theorem 2 .1, let "* : PT be defined 

in (3.2). Then plim.... 
-- '1'~00 

S* = p ( l). T y 

Theorem 3 .2. "* Under the conditions of Theorem 2 ·3, let PT be defined 

in (3.2). Then as T~oo /T ($;-P (l)) has a limiting normal distri-
y 2 3 2 4 

but ion with parameters 0 and ( 1-CX ) / ( l +o: ) • 
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4. ESTIMATION BASED ON THE FINITE AUTOREGRESSIVE APPROXIMATION. 

ASYMPTOTIC THEORY WHEN THE ORDER IS FIXED 

4.1 Introduction. 

Durbin (1959) proposed an estimation procedure for the parameters 

of (1.1) that we here analyze for the simplest case of q = 1. 

As seen in Section 1.2,:~ if we want an exact representation of (1.7) 

of the autoregressive type we can choose between ( 1.17) whose residuals 

are correlated, and (1.27) where the order of the autoregression is 

infinite. Dutrhi.n'' s idea is to use instead an approximation of the form 

( 4.1) 

where f3 0 = 1_:~ the are assumed uncorrelated with zero means and 

constant variance, and the order k is assumed large enough to make the 

approximation useful for the purposes of estimation. The choice of k 

turns out to be a major theoretical and practical issue, but we post-

pone its discussion until later. 

The first stage of Durbinijs proposal consists in estimating the 

f3j in (4.1) by ordinary least squares. If we denote 

( 4.2) 

equation (4.1) leads to 
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( 4.3) 

. and the normal estimating equations are 

( 4.4) 

If we introduce the notation 

(4.5) 1 
T 

T 

I lt-l~t-1 
t=k+l 

t k+l.:> ••• :;T :~ 

where M.r is of order k x k and ~ is of order k x l.9 the solution 

of ( 4.4) is 

(4.6) 

The k x k matrix vt 1y~ ~ == (yt .,Y+ . ) is of rank · l (every 
~ - ~u=~ =L u=J 

minor of order 2 is 0). However the matrix L y yi 
t.-.,t-~t=l.)> 

where the sum 

is over at least k values of is positive definite with probability 

one: the condition for linear dependence among colv.,_"f!lls is that there 

exist c.'s~ not all equal to zero~ such that 
J 

k k 
0 L c. L y.L oY+ 0 

::: L Yt=i l 
j=l J t c,=], v=J t j=l 

coy. 0 

J "t=J 
J) i = 1;!>2). 0 0 J) k 

' 

and the probability is 0 ~hat the same linear combination of the y 1 s 
t 

is o. Since in our asymptotic arguments T is large compared with k, 
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~ defined in (4.5); is positive definite.'! and hence nonsingular_, with 

probability l. 

It will be proved in Lemma 4.3 that pli~ M = ~ = (a (i-j)); 
'1'~ 00 ""'' ...... y 

for each fixed k~ that is, ~ estimates consistently the covariance 

matrix of a segment (y1~···»Yk) sampled from (1.7). The components 

of M:r and are slightly different from the sample autocovariances 

defined in Sections 1.4.1 and 2.1,. all being based in T-k terms. Durbin 

[(1959), P• 312] also considered using cjT's to estimate the ~j's, as 

will be discussed in Chapter 5. 

a is 

( 4. 7) 

k-1 

l b"Tb"+' T i=O ~ . ~ .1., 
k-l 
l: b~T 

i=O l 

where bOT = 1. To preserve some symmetry we let the sum in the denominator 

of (4.7) include terms only up to k-1» as in the numerator, while it 

could also include for k moderately large and as the 

difference between the two possibilities will be very small. 

Durbin's argu'11.ent to pass from (4.6). to (4.7) is based on approxi-

mating the joint distribution of the bjTus, introducing the parameter 

a by equating the covariances ~YtYt+s with those of the moving-average 

model» and then looking for the maximum likelihood estimator of a. From 

our point of view we take {4.7} arJd (4.6) as defining the estimator, and 

try to derive its asymptotic properties. 

Dl:trbin argued that provided one can choose k as needed.-9 the 

estimator vmuld be consistent and achieve asymptotically 
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( 4.8) 

which is Whittle 1 s ( ( 1954) .;> p. 4.32] evaluation of the minimum asymptotic 

variance of consistent estimators of CXo Our main efforts are directed 

towards giving detailed proofs of these assertions, and trying to treat 

k formally. 

Note that if in (4.7) biT is replaced by (-ex)\ then (4.7) 

becomes equal to ex. This provides an interpretation of Durbin's final 

form of the estimator. The interpretation is based on the fact that 

if the ut are considered to approximate the €~ of ( 1.17) .:> then t3 j 

is approximately equal to and hence approximately estimates 

( -ex)j. The approximation is 1 a priori' very good_,. in the sense that up 

to second-order moments Var (E~ k) differs from a constant by a factor 
,,] 

(1~. 2k+2). ( ( )] ,.._. ., which tends to~one very fast cfo 1.20 • · But nete that if 

in (4.1) we substitute directly t3j = (-ex)jJl we will not obtain a simple 

estimating procedure for ex; in fact we livill then be led to equations 

similar to (1 • .36) in level of complexity. 

One attraction of Durbin 1 s proposal is that both stages are based on 

linear operations. There exists then a good motivation to investigate 

some of the details of the method. Many of the known estimation procedures 

are also two-staged... but are computatienally more complicated. 

4.2. Probability Limit When the Sample Size Increases. 

We now consider the evaluation of pli~~oo ~T when k is regarded 

as fixed, not changing with T. In this section we treat the case q=l. 
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Theorem 4. L Let y t satiefy equation ( l. 7) for 

where 0 < la:l < 1 and the E: are independent~ t nor~al with ~Et = 0~ 

~ E~ = cl ( 0 < cl < co) for all t. Suppose that l~ is chosen satisfyi~ 

k ~ lJ and that a set of observations of {yt} at times t ~ 1~2 2 ••• 2 T 

A 
is available 2 where T > k+l. Then for a:T 2£fined b;;-_{_4.7) we have 

A 
a: = a: 

T 

To prove this assertion we present tlrree le:m.m.as; but first observe that 

(1.12) implies that 

l+a:2 Q 0 

2 a l+Ct2 0 2 (4.10) 2:: ~Y v' a - CJ ;e ) ~t~J!._,t~l 

0 0 

(4 .11) 2 0 
2 

Flt~lyt a - a .:1 

0 



Lemma 4.2. Let {z;} be a sequence of random variables and let m be 

a .fixed positive integer. If each of the subsequences { z ~+ : s := o, l, ... } 
J sm 

for j = 1~2~ •.. ~m satisfies the weak law of large numbers? then the 
) 

sequence {z~} does too. 

Lemma 4.3. Under the asSiW!1ptions of Theorem 4.1, 

(4.12) plirrtn 
.1. -J>oo 

The proofs of Lemmas 4.2 and 4.3 constitute Section 8 .l. 

Lemma 4.4. 

components 

( 4.13) 

Under the assumptions of Theorem 4.1 the vector 

l<=Q:2k-2j+2 

l<=Q:2k+2 
j 

-l p q 
,.., ""' has 

Proof. Shaman (1968) shows that if ~-l- (crij) is of order k x kJ then 

(4.14) ij 
(J 

(<=Q:)j-i (l-cii)(l<=Q:2k-2j+2) 

i( 1-ci )( 1-a:2k+2 ) ) 
j > i 

Now: 
-l 2 ~1 . 2 -1 -l 

P q = cr l: a = a: cr I: e. Hence the components of ~. a are 
~ ~ f'>:dJ ~ f'>J F'V ,....,;e 

2 -l 
O:cr times those in the first row of ~"" [i=l in (4.14)]" which proves 

the lemma. Q.E.D. 

Proof of Theorem 4.1. Using the notation introduced. in (4.10) and (4.11), 

from Lemma 4.3 conclude that pli~ Mr = ~ = 
2 ;e ... and pli~ we (J' 

~ -J>oo -J>OO 
2 

Since Mr is order k X k, the components of -l 
(J _<l• of MT are 
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continuous functions of the components of ~ that do not involve sums 

of order T of those components. Hence 

plirP.,., 
.L~OO 

We then have that 

plim_ 
'l'~oo 

-l p 0 

""' 

-l 
p q .:> 
""" ..., 

whose components are evaluatedin Lemma 4.4. Substitution in (4.7) 

gives the desired answer. The details are in Section 8.2. 

Note: When tT is ctefined with the denominator in (4.7) equal to~ ~=Ob~T.:> 

expression (4.9) becomes 

( 4.15) 

To illustrate the importance of the factor of a in the first line 

of ( 4 ·9) ~ we present the results of Table 4.1. It shows the values of 

( l/et) pli~~oo aT, for several combinations of values of a and k. 

Note that the factor approaches l when a: ~ 0 (for given k) ~ while 

it approaches 2(k+l)(k+2)/(2k? +9k+l3) when a~ l (by L'Hospital 1 s 

ruleh the corresponding limit for (4.15) is 2k/(2k+3). 
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Table 4.1 

Factors of ex in (4.9) for selected values of ex 

k .l .2 .!2 .4 ..:2 

l ·99009900 ·96153846 ·91743119 .86206896 .80000000 
2 ·99980396 ·99704788 .98649889 ·96295530 -92421441 
3 ·99999705 ·99982313 ·99819235 ·99135347 ·97347960 
4 ·99999996 ·99999056 ·99978313 ·99816190 ·99130898 
5 ·99999999 ·99999952 ·99997559 ·99963222 ·99729158 
6 ·99999999 ·99999997 ·99999736 ·99992932 ·99918682 
1 ·99999999 ·99999999 ·99999972 ·99998679 ·99976248 
8 1.00000000 ·99999999 ·99999997 ·99999758 ·99993204 
9 1.00000000 ·99999999 ·99999999 ·99999956 ·99998086 

10 1.00000000 ·99999999 ·99999999 ·99999992 ·99999468 
20 1.00000000 1.00000000 1.00000000 1.00000000 -99999999 
30 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 

k .6 .=]_ .8 _:2. 

l ·73529411 .67114093 .60975609 ·55248618 
2 .8719797'7 .81055427 0 74481457 .67882587 
3 ·93979090 .88987126 .82776960 ·75932069 
4 ·97256174 ·93602243 .88136964 .81394940 
5 ·98787621 ·96309708 ·91728999 .85290284 
6 ·99478831 ·97893002 ·94195785 .88175021 
7 ·99781092 ·98812350 ·95916141 ·90374524 
8 ·999097'79 ·99338314 ·97126611 .92090072 
9 ·99963384 ·99635518 ·97981879 ·93452281 

10 ·99985324 ·99801290 .98586703 ·94549381 
20 ·99999998 ·99999676 ·99967463 ·99018094 
30 ·99999999 ·99999999 ·99999426 ·99824687 
40 1.00000000 ·99999999 ·99999991 ·99971094 
50 1.00000000 ·99999999 ·99999999 ·99995534 
6o 1.00000000 1.00000000 ·99999999 ·99999340 
70 1.00000000 1.00000000 -99999999 ·99999905 
So 1.00000000 1.00000000 1.00000000 '·99999986 
90 1.00000000 1.00000000 1.00000000 ·99999998 

100 1.00000000 1.00000000 1.00000000 ·99999999 
150 1.00000000 1.00000000 1.00000000 ·99999999 
200 1.00000000 1.00000000 1.00000000 1.00000000 
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From the result of Theorem4.1 it is easy to derive an asymptotic 
A 

expansion for plim aT. 

Corollary 4.5. Under the assumptions of Theorem 4.1 we have that 

( 4.16) 

where by definition 

(4.17) lo(y)/ ~My 

for all y > 0 and fixed M > o. 

The proof of Corollary 4.5 is in Section 8•3. 

For ( 4.15) the probability limit as T -Ho can be written as 

( 4.18) 

4.3 Asymptotic Normality When the Sample Size Increases. 

Let us define the expression in (4.15) as a* that is) 

( 4.19) 

i\ 

* a 

where aT is defined by 

(4.20) 

The inclusion of in the denominator will simplify some of the 

calculations. 
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A 
exT be defined Theorem 4.6. Under the assumptions of Theorem 4.12 let 

in (4.20) and a* be equal to (4.15). Then2 as T ~oo j IT (~T -ex*) 

has a limiting normal distribution with parameters 0 .and 

(4.21) 

where B1? B2 2 and B
3 

are functions of a and k written in full in 

Section 8.4.3. 

Proof. Since all needed results are homogeneous of degree 0 in ~? we 

2 take a = l without loss of generality. 

The proof of the theorem will be done in several parts, as follows. 

Part 1. [As;ymptot ic normality of {T ( ~T- ~*)] • 

Let 

(4.22) 

with components given by the negative of (4.13). 

First we want to sho1,r that /T (~T- ~*) has the same limiting 

distribution as - /T ~t -J.J ( Sr + ~~*) • The details of this are given 

in Section 8.4.1. 
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Next: ~(~ + ~· £*) = Q J and IDr + ~ £* has components 

( 4.23) 

T~i k k T-i 
1 \ '\ ~* '\ ~* 1: ' T L ~ h ys ys+i-h = L h T L Yt yt+i-h j 

s=k+l-i h=O h=O t=k+l-i 

These random variables have the same structure as those in equation (2o43)· 

By the argument given in Section 7.3 .3 it follows that for fixed i the 

d . _o bl \ k R* . ran om var.La _es t- h=O ~-'h yt yt+i-h are finitely dependent of order 

k+lJ> which is now a fixed number. By the Central Limit Theorem for 

finitely dependent random variables [see for example Anderson (l97la)j 

Theorem 7 • 7 • 5 ] J as T ~ oo the random vector IT ( m:r + ~· £'*) has a 

limiting normal distrib~.:ltion with parameters Q and 

( 4.24) 

and hence IT (~T- _E2,*) has a limiting normal distribution wHh parameters 

0 and 
""' 

( 4.25) 



Part 2. .(Asymptotic covariance matrix of .[T (:!8r + Mr ~*)]. 
The components of (4.24) are 

( 4.26) 
T k 

1 . 1 \ \ 
. J_~---700 T L L 

s.)lt=k+l h...,h'=O 
1 s. i, j ~ k. 

In Section 8.4.2 it is proved in detail that the components fij of the 

matrix r defined in (4.24) are given by 

(4.27) 

where 

( 4.28) 

(4.29) 

f. "1 l.J 
1 + cl + cx2k+2 ( 1-cx

2 
)[ (3 -cl) -cx

2
k+

2
( 1 +ex

2
) J , 

( l-cx2k+2) 
2 

i=j ' 

2k+2 =ex+O; 

0 j 

k+2 
f .. 2 = 2( -ex) 

l.J 

= 0 .)1 

ex( 1-ci) 
2k+2 

l-ex 
I i-j 1=1 , 

otherwise , 

i+j=k J 

otherwise ._, 
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Part 3. [Asymptotic distribution of /T (a -ex*)]. 
T 

From (4.20) it follows that is a continuous fQnction of the 

components of Noting that 

k-l 
' ** L f3l'i+l 

i=O ex* 

[see formula (8.3)]~ from a standard result in asymptotic statistical 

theory it follows that /T (a:T- ex*) has a limiting normal distribution 

with parameters 0 and 

k 
( 4.31) v r 

i;j=l 
ho o 
lJ 

()a* Co:* 
df3* Clf3*; 

i J 

where the h. 0 are the components of j! defined in ( 4.25) (See e.g. 
lJ 

Rao (1965); Section 6a.2]. Hence it remains to show that v defined 

in (4.31) agrees with (4.21)9 this is done in detail in Section 8.4.3. 

vJe now derive an asymptotic expression for v. 

Cor(::>ll.ary 4.7. Under the conditions of Theorem 4.6, the variance of the 

lim-7t1ng distribution of jT (aT- ex*) is 

(4.32) v 

where is (8.70) of Section 8.4.3 with a2
k repl~ced by 0. 

The proof is in Section 8.5. 

By rearranging its terms can be written as 
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4 
( 4 ·33) I 

j=O 

for some coefficients pj that are functions only of a. We om~t these 

details here. 

4.4 Behavior of the Parameters of the Asymptotic Distributions When 

the Order of the Approximating Autoregression Increases. 

One way to interpret the proposal studied in the previous sections is-

that for sufficiently large samples (so that the limiting distribution as 

T ~oo is a good approximation) by suitable choice of k one obtains an 

" estimator ~ which is very close to being consistent for a, . and whose 

variance is very close to ( l-a
2 )/T. Another possible approach is to 

state k as a function of T, and fix the rate at which T dominates 

k; this was done in Chapter 2 for a method of estimating the serial 

correlations. 

In terms of the first interpretation mentioned above, it is relevant 

to study the behavior as k ~oo of the limiting distributions obtained 

in Section 4.3. 

Theorem 4.8. Under the con eli tions of Theorem 4 .1, let 

(8.7) and E = (fij) as in (4.24). Then, for fixed j 

and for fixed i and j 

52 

~~ be as in 
J 



liTI'L L 0 

.1\:--J>OO lJ 
1 + ci 

0 ~ 

j 

otherwise • 

Proof. Expressions (8.7)~ (4.28) a!ld (4.29) make the proof im:mediateJ 

because lal < 1. Q.E.D. 

These resu.lts can be interpreted as follows: If T is large 

enm.Igh"' and k large enot.gh~ then the first stage of the estl.::nation 

procedure (approximately) estimates the (~a)j as coefficients of 

(4.1) (see also the discussion in Section 4.1):; and the covariance rr..a.trix 

of these estimators is 
-1 

I', • 
""" 

If then the covariance matrix is 

Since for fixed this shows that 

( approxirr,ately) the first stage wor:m as a standard regression problem 

with stochastic regressors. 

These res1:olts 1.vere mentioned and. UfF.-;d by Dux bin [ ( 1959) j page 307]. 

Theorem 4. 9. Uncler t:he conditions of Theortc:m 4 .12 let et* and v be 

6,2 in Theorem 4 .• 6. Then 

( 4 ·3?) 

Proof. The forms (4.15) and (4.21) make tb.e proof i:r:rrrr.ediate. Q.E.D. 

The results of Theorems 4.8 and 4.9 can be arrived.at in a direct 

way J by redo:ing the proof of Theorem. 4. 6 and discarding readily the terms 

that are negligible for ·k large. Durbin [(1959);~ Section 4] gives a 

d:i.fferent ax"gument to thie effect. 
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The ith component of ~ + ~ ~* is given by (4.23). Using 

",,}' to mean "asymptotically equivalent to" (as k ~ oo).~~ we have that 

...... € ' t 

so that (4.23) is asymptotically equivalent to (1/T) [ ~=k+l Yt-i E:t• 

Instead of (8.16) we avaluate directly; using Yt = E:t + G€t-l' 

i=j 

( 4 ·39) li-jl =1) 

= 0 .9 

which is the same result as ( 4.35). Hence fT (~- ~*) converges in 

distribution to a normal vdth parameters given approximately by Q and 

~-l.~~ and in ( 4 .31) 

(4.40) v ...., 
k 
, ij en* en* 
1- IJ' 2Jf3: 2Jf3: • 

i;j=l ~ J 

Now 
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(4.41) 

and hence 

(4.42) 

2 l-0: .• 
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5· ESTIMATION BASED ON THE FINITE AUTOREGRESSIVE 

APPROXIMATION. A MODIFIED VERSION OF THE ESTIMATOR. 

5.1 Introduction. 

The asymptotic theory developed in Chapter 4 leads us to consider 

the two-staged estimator of a proposed by Durbinj as one that is 

satisfactory from the large-sample theory viewpoint. Howeverj nothing 

has been said about its small-sample properties. 

In his original paper Durbin (1959) exhibited as illustration a 

group of 10 simulation runs with T=lOOj where the observations were 

generated by model (1.7) with a= 0.5. The resulting estimates 

showed a good agreement with the asymptotic variance (1-af)/T but 

their average differed rather seriously from 0.5. In his later paper 

Walker (1961) tried to account for part of the small-sample bias, but 

his correction is complicated and not completely effective from a prac-

tical point of view. Hence the question of small-sample bias seems an 

open one. 

One possible way to improve the finite-sample performance is to 

use more fully the structure of the underlying moving-average model. 

This can be done is a way that also makes the computations more simple. 

The idea is due to Anderson ( l97lb) and consists in replacing the 

first-stage equation (4.6) by 

(5.1) 

where 



cOT clT 0 0 clT 
c cOT clT 0 c2T lT 

(5.2) ~ = ) £T = 
' 

0 0 0 ckT 

and as in Chapter 2.)> 

T-j 
( 5 ·3) cjT 1 I YtYt+j ) j = O,l.)lo••Jk 0 

T t=l 

Note that for each fixed k, 

(5.4) plim._ CT = 2:: 
1'~ 00 "' I'V 

2 plim._ cT = a q o 
'1'~00 ..., 

The basic idea is to replace in ~T' cjT by 0 for j > l.1 since 

in fact cry( j ) = 0 if j > 1 (see ( 1.12)) ~ then both Mr and £T 

estimate ~ consistently. 

If we now write 

1 rlT 0 0 

1 rlT 0 
(5-5) ~ CO'I' cotz..vr ) 

• 
~ 

0 0 0 1 

~ is the matrix of those sample autocorrelations that do not estimate 

o, and we have that 

(5 .6) 

where as in Section 2.1. 
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The components 

(5-7) 

where 

(5.8) 

w. 'T . lJ 
-1 

or ~ are given by 

( 2k-2j+2)( j+i+l j-i+l) 
l-xlT xlT -xlT 

2 2k+2 
rlT(l-xlT)(l-xlT ) 

xlT== 2r
1
T 

"" 

i:5_j) 

see e.g. Mentz [(1972), Chapter.j]. Hence fT has components 

(5-9) = 
k 

l: w. 'T cJ.T == -
j=l lJ 

k 

L w. 'T rJ.T ' . l lJ J== 
i=l,2, ••• ,k, 

and the final estimator of a: is now 

(5.10) 

k-1 k k 
L ( 2: w. 'T r.T)( [ w.+l 'T r.T) 

i=O j=l lJ J j=l l ,J J 
k k 2 
L ( I w · 'T r 'T) 

i==O j==l lJ J 

This estimator is easier to calculate than that of Chapter 4, because 

A 
instead of having to solve the system ~T == -~ in the first stage, we 

have the expiicit form (5.10); this of course reflects the fact that we 

know explicitly the components of The large-sample properties of 

"" QT will be investigated mathematically below. The small-sample perfor-

mance can be studied through simulations, but we will not include them 

in this work. 
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As ~vas noted in Section 4.1 Durbin [(1959)~ p. 312] suggested.as an 

alternative to (4o6)" and hence to (5o6) above~ to estimate the t3.'s 
J 

v of the approximating autoregression by where ~ has components 
v 

r ij T = r I i ~ j I , T for Clearly the proposal studied in this 

Chapter corresponds to letting ~ijT = 0 for li~jl > 1. 

5.2 Probability Limit and Asymptotic Normality. 

From the proof of Theorem 4.1 and the fact that (5.4) holds" we 

see that 

( 5 .11) 

* where Ct is given by (4.15) or (4.18); it would be given by (4.9) 

or (4.16)if the sum on i in the denominator of (5.10) reached k-1 

insteadof k. Hence O:T is also an inconsistent estimator of a;. 

To find the asymptotic distribution v.re note that the same steps 

of the proof of Theorem 4.6 can be used. In fact 

(5.12) 

and 

( 5 .13) 

have the same limiting distribution as T ~oo~ by the s~me arguments 

used in going from (8.10) to (8.13). The vector C. +c ~=<* has t ~--' componen s 
NT "'T"' 

(5.14) 

. and 
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i 

which are of the form 

( 5 .16) i 

These random variables have the same structure as those of equation (2.43), 

considered in Section 7·3-3; by the argument presented there, it follows 

that for .fixed i the random variables are finitely 

dependent,of order k+l, which is now a fixed number. By the Central 

Limit Theorem for finitely dependent random variables IT c~.T +£T£*) has 

a limiting normal distribution, and so does - fT r.-1( c +C [3-~). 
"' "'T ""'T"" 

We have to find the variances and covariances of the limiting 

distributions. Let 

then ~Uo = 0 and we need ~uou. = Cov(uo,u.) for i,j = l,2, ••• ,k. 
l l J l J 

To avoid lengthy algebraic details as those of Chapter 4, we shall 

only consider the evaluat~on of the variances and covariances of the 

limiting .distributions as T ~ oo, omitting factors and terms like . o:k, 

~k, etc. that tend to 0 as k ~oo, proceeding as we did at the end 

of Section 4.4. In particular we take (5.15) as including i=k, because 

the addition of to will:not affect the 

necessary values. Hence we need the limits as T ~oo of 

and ~UoUo 
l J 

in ( 5 .15) • 

is defined in (5.14) and 

For i,j > 2 we have that 

6o 

u. 
l. 



~u.u. 
l J 

( 5 .18) 

Since ~ui 0 we can. evaluate 

T-i T-j 
T((25c.Tc.T-ec.Tec.T).~ _Tl t" ' ~y y +"YtYt+.-a (i)CJ (J·) v l 1 ~ l ce J L L ~ s s J. J ·Y >r "' s=l t=l ,J 

( 5.19) 
l 

=-
T 

T-i T-j 

I I 
s=l t=l 

-a (i)cr (j) y y 

l T~i T-j 
~ ~ cr (t~s)a (t-s+j-i)+cr (t-s+j)cr (t-s~i) • 

T s=l t=l Y Y Y Y 

Since the covariances vanish for lags exceeding one in absolute 

value, the first summand will cont:ri)bute only when t-s = -1_,0 or l; 

in the second summand t-s+j and t-s-i must also be oqe of thes~ 

three values: this determines contributions only for i)j = 0,1,2_, and 

in terms limits t-s to be -1_,0 or lo Hence (5.19) tends as T ~oo 

. to the sum of the contributions listed in expression ( 7 o27). Then 
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a -
4
liiiL T(~ c. Tc .T- fc. T~c "T )==2( l +4a

2
-l-o: 

4
) ~ 

'l'~oo l · J l J 

(5.20) 

2 4 
== l +50: +a: ; 

2 4 
==l+4o: +a: ~ 

2 
=4o:( l +a: ) ; 

2 
==20: ; 

i==j=O; 

2 
=0: ~ 

=0 ; 

. li-j/=2, (i,j)f(o,2),(2,o), 

li-j/ > 2. 

These values can be checked with an expression in terms of the spectral 

density function defined in (1.28), because (5.20) equals 4n jn cos(vi) 
-n 

cos(vj) f 2(v) dv1 and for the case of q = 11 f (v) = (cr2/2n)(l+a:2+2U cos v). y y 

See1 for example, Anderson [(l97la), Sections 7.5.2 and 8.4.2]. 

Substituting in (5.18) the values derived in (5.20) 1 we can evaluate 

lim...... ~u. u. = a . . 1 say. 
'l'~OO l. J lJ 

Now: The covariance matrix of the limiting normal distribution of (5.13) 

is given for large k approximately by 

(5.21) -1 ) -1 
I: (a.. I: ' 
""' l.J """ 

whose components are 

(5.22) 

Let v be the variance of the limiting normal distribution as 

T ~co of /T (aT-a:*), where a:T is defined in (5.10) and a* in 

(4.15) 1 and we operate in the manner specified earlier in this section. 

As in ( 4.31) "" v is given by 
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k 2Jcx* Cn:X· 
(5.23) v = [ h. 0 

l.J d~: 
"'-

iJj=l "dr:< 
1. J 

where h.. is given approximately by (5 .22). lJ 
,.., 

) 

We then have that as k ~ oo; v approaches 

(5.24) ( l-a2) + a6 16+9af;7a 
4 

+ 
l-Q 

The mathematical details are given in Chapter 9· 

We sullmarize the main results obtained so far as follows. 

Lemma 5 .1. Under the conditions of· Theorem 4.1 the covariances of the 

limiting normal distribtltion of /T (cOT-,ay(o)), (T (c1T-cry(l)); .fT c2T' 

•••; (T ckT are given by (5.20). 

Proof. For a general linear process the asymptotic normality is proved, 

for example; in Anderson [(l97la).., Section 8.4.2]. This result merely 

specializes that to the moving average model. Q.E.D. 

...., 
Theorem 5.2. Under the conditions of Theorem 4.1 let ~ be defined 

in ( 5.6). Then pli:m..... f3T = t3-x- given in ( 4 .22). 
-~ '1'~00 ('V A.J 

Further 

has a limiting normal distribution with parameters 0 and 
""-~ 

A,}~* ( ) for large k; ;!!; i.s given approximately by 5 .21. 

Theorem 5·3· Under the conditions of Theorem 4.1 let o;T be .defined 

in ( 5 .10) • Then pli~rl'OO aT = a* given in ( 4 .15) and ( 4.18) • 

Further /T (UT9D.~) has a limiting normal distribution with parameters 
'~ 0 and V ; and lirn,~ 'V'* = v · _g,:lven by ( 5 .24). 

J:\.~00 



The actual determination of the exact values of in 

the previous two theorems can be done as in Chapter 4, but we omit 

those details here. 

5·3 Other Variants of the Proposal. 

After the work of the previous two sections was completed, the 

publication of a paper by McClave ( 1973) dire~ted our. interest to some 

variants of the estimation procedure described in Section 5.1. These 

variants will be analyzed briefly here. 

McClave (1973) studies empirically three modifications of Durbin's 

proposal described in Chapter 4, with the desire to control the small-

sample bias. In our notation they consist of the following things: 

(i) To let the sum in the n~erator and denominator of (4.7) to range 

only over 0 < i ~ n1-l, for some integer n1 (n1 < k) to be 

chosen simultan~ously with k. 

( ii). To replace (1/T) 'T y y by 0 
L t=k+l t-i t-i+2 in ~ and IDT defined 

in ( 4.5). 

(iii) To replace ( l/T) L ;=k+lyt-iYt-i +h by 0 in ~T and ~} for 

h=n2
+l, n

2 
+2, o o .,k, where n2 is an integer (2 ~ n2 < k) to 

be chosen simultaneously with ko 

In these terms the proposal defined in Section 5.1 corresponds to 

case (iii) with n2 = 1, except that the sample quantities are set equal 

to their probability limits in ~T and in (The difference between 

the sample quantities in ~T and in QT is minor, as was noted above). 
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Unfortunately for us McClave does not publish numerical results for 

The paper under study presents results for alternative (ii) when 

simultaneously several choices of n1 as in (i) are made, and for 

(iii) when remedy (i) is also used, and n1 = n2 • In the first such 

case the resulting procedure is effective in decreasing the bias (for 

T. = 100, a= 0.5, 5 :5. k :5. 10, 4 S n1 S 6), but "the corresponding variance 

increase is about fourfold" (p. 601). For the second alternative (for 

T = 100, a= 0.3, 0.5 and 0.8, 5 S k S 10, l S n1 = n2 S 5), the bias 

is also decreased but as n1 becomes small (i.e., more sample quantities 

are set equal to zero), 11 the increase in variance ••• becomes more s ignifi-

cant as I al increases" ( p. 603). 

It is clear that McClave' s proposals could be easily studied as in 

Sections 4.4 and 5.2, and also as in Sections 4.2 and 4.3r to determine 

the behavior as T ~oo. From a practical point of view proposals (i) 

and (iii) imply the choice of new quantities (n
1, n2 , or .both) to be 

chosen together with k, and clearly the resulting procedures are less 

attractive for practical use. 

We now consider the case of changing the procedure of Section 5.1 

be replacing cjT by 0 for j > l, 

Let £T = ( c lT' 0, ••• , 0)' , , ~T = 

also in £T defined in (5.2). 
-1- -

-QT £T' and aT defined as in 

(5.10) with rjT replaced by 0 for j > 1. The same approach of 

Section 5.2 can be used. In particular, pli~~oo £T = ~ as before. 

Let ui be the i-th component of Q = (T (£T + ~~*). Then 

( 5 .25) i = l, 2., ••• ' k ' 



* * using again that ~O = 1, ~k+l ~ 0. Hence 

= limT eu. u. 
~00 l J 

(5.26) 
"+" 2 2 2 2 4 2 

= (-a)J. J- [a (l+a ) +(l+a ) ] , 

i, j = l, ••• 'k ' 

which is the component a .. 1 of a .. , introduced in ( 9.2). Then the 
lJ lJ 

variance of the limiting normal distribution (as T ~oo) 3 calculated 

as in Section 5.2 for k large, is 

-y ,...., 

(5.27) 

k (lei~ ?J:x* 
'\ -­L I 

i,j=l d~~ d~~ 
l J 

~ criscrtj(-a)s+t-2[a2(l+a2)2+(l+a4)2] 
s,t=l 

a2(l+a2)2+(l-tU4)2 

( l-a2)2 

1 + a2 +4a4 +a-6 +as 

( l-a2)2 

This is the asymptotic variance of the "analog" or moment estimator 

defined in (1.34) [cf. Whittle (1953), p. 432]. The connection can 

be ehecked easily because for j = l (5.7) becomes 

(5.28) wilT = 
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xlT - xlT ' i - l, 2, ••. 'k ' 



- . 

and letting rjT = 0 for j > 1 in (5.10) we have that 

k-1 

-
0: = -

T 

i~O wilT rlT wi+l,lT rlT 

k 2 
i~O (wilT rlT) 

k-1 0 

~ (x2l _ 
i::;::O lT 

- xlT -'---::k---
2

-0 -------- ' 

' ( l - 2 + -2i) L xlT xlT 
i=O 

( -2) -2i-2] l+xlT + xlT 

-1 ; 2 which is approximately equal to -x1T = (2r1T) (1- l-4r1T); for 

large k. 

~ - 2 The values of v and v are compared in Table 5.1 with 1-o: 

for several values of o:. 

Table 5.1 

"" - 2 Values of v" v and 1-o: for different o: 

..... - 2 0: v v 1-0: ~ 

.1 ·990016 1.030916 ·99 

.2 .961088 1.135488 .96 

·3 -923368 1.356351 .91 
.4 .923420 1.795849 .84 

·5 1.118489 2. 701388 ·75 
.6 2.028235 4.740849 .64 

·7 5-962541 10.094951 .51 
.8 30.477959 28 .6JJ550 .36 

·9 362.098390 149.482220 .19 
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Hence for a wide range of values of a setting some estimators 

equal to 0 (their probability limit as T ~oo) in ~ as well as 

in ~ results in an increase in the asymptotic variances. 

It is apparent that the i:wo alternatives are highly inefficient 

for values of lal close to l. Since in McClave's paper it is 

shown that his proposals were in general effective as bias-reducing 

""" -devices, it seems safe to conjecture that aT and aT considered 

in this Chapter should also be,considered as competitors in reducing 

the small-sample bias of the proposal in Chapter 4. However, as is 

often the case in time series estimation problems, there is a severe 

trade off between bias and variance. 
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6. GENERI\.L COJI.1MENTS 

6.1 Comments About the Estimators and our Findings. 

In the Introduction and Su...111lllary) and also in Chapter 1.:> we presented 

some comments about the basic proposals considered in Chapters 2 and 4. 

At the beginning or end of the preceeding four chapters we commented 

briefly about the corresponding estimation procedures, and the properties 

we were interested in proving. We did not discuss in any detail the 

contents of the papers by Durbin (1959) and Walker (1961), not shall we 

do that here. 

In this section we want to insert some additional comments stemming 

from both our work and consideration of the two papers referred to above. 

The corn_ments 1-rill be given jointly for the proposals considered in 

Chapters 2 and 3 J and 4 and 5, since it will become apparent that there 

exist ample similarities among them. \liTe shall refer only to the case of 

q = 1, the first-order moving average model. It is hoped that some of 

these comments may be useful for further studies of the estimation problems 

considered here. 

a) Interpretation of the estimators as linear combinations of sample 

SEantiti~~· From Section 4.1 we know that Walker's estiw~tor of 

p (l) is a linear combination of sample autocorrelations.:> since (2.7) is y 

k-l k 
(6.1) I w~(j) r~+l T = rlT + L ~(j-l) rJ.T • 

j=O J 7 j=2 

On the other hand~ we can write Durbinus estimator of a given in (4.7) 

as 



k-1 
(6.2) - I £T( Jo) b 

j+l,T ' j=O 

a linear combination of the first k sample autoregressive coefficients, 

where 

( 6 ·3) j o,1, ••• ,k-1 , 

and bOT = 1. Note however that in general £T(o) 1 1. 

The mT(j) and £T(j) .are also random variables, functions of the 

b) Behavior of the sums of the coefficients of the linear combinations. 

Having noted that the estimators are linear combinations of sample 

statistics, it pays to consider the values of the s~~s of the coefficients. 

For large T and k, we know that the ~(j) in (6.1) are approximated 

by the m1,T(j) introduced in (2.37), which in turn converge to (7.25). 

Hence for large T and k, 

(6.4) 
k-1 k-1 . [ :) ] I 2 , J _1-cr -· l+a: 

J
OI=O ~(j) ~ JOL=O (-a:) 1 + j ·-

1+0:2 (l+a:)2 

Similarly, for large T and k, the b,T in (6.2) and (6.3) are approxi-
u 

mated by (8.7), and that in turn by (-a:)j. Hence 

( 6 ·5) 

k-1 

~ boT 
10=0 J 

! "' 1-a: • 
k~l 2 
~ boT 

j=O J 

For positive a, (6.4) and (6.5) are srn.aller than 1, and for negative 

a: they are larger than 1. 



We showed that the coefficients are the appropriate ones that lead 

to the desired large-sample results. However, it might be possible to 

change them slightly to correct the small-sample downward biases for 

a > 0, say, without affecting significatively the small- and large-sample 

variances. These ideas should of course be studied mathematically as we 

did in Chapter 5, and also empirically through Monte Carlo trials. 

c) Asymptotic behavior of first sample autocorrelation and autoregressive 

coefficients. We discussed in Section 2.1 that estimates p (l) y 
consistently, no matter how k is chosen (i.e., no matter how many sample 

autocorrelations are computed simultaneously, in so far as l < k < T-l). 

Hence Walker's proposal was interpreted as trying to improve the asymptotic 

variance of a consistent estimator. 

On the other hand, from (8.7) we see that for k fixed, 

t . t tl T - A* -- ~(l ~2k)(l~2k+2)-l. es 1w~ es consisten y as ~oo, ~1 ~ ~ ~ For large 

k this is very close to a, but for the special case of k = l it equals 

a(l~2 )- 1 • This is correct because for k = l we are estimating the 

parameter of a first-order autoregression by ordinary least squares, and 

that gives a consistent estimator of py(l), which equals a(l~2 )-l 

for the first-order moving average model. 

The situation persists for all other sample autocorrelations and 

autoregressive coefficients that enter in (6.1) and (6.2), because 

plim_ r.T = 0 for j > 1, while plim_ b .. T = (-a)j(1-a2k+2-2j) 
~~00 J ~~00 J 

( 2k+2)-l 1 l~ , for j = 1,2, ••• ,k. One implication is that Walkers proce-

dure may depend less heavily upon the choke of k for a wide range of 

values of u, and that it may also be less biased for small samples. The 
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latter point showed up to a limited extent in the examples presented in 

the two original papers,. but clearly more empirical evidence is needed, 

in particular about Walker's proposal that has not been considered to any 

extent in this connection. 

Note that /T (r1T-py(l)) is asymptotically normally distributed 

with variance 

(6.6) l- 3[_£_]2 
+ 4[...£_]4 

1+0:2 1+0:2 

l + ci + 4a4 
+ a6 

+ a 8 

( l +0:2) 

+ ' 

[from (2.5)], while from Theorem (2.3) it follows that the variance of 

the limiting normal distribution of /T (3T-py(l)) is the first term in 

the last line of (6.6). 
II 

For Durbin's proposal, /T (~T-~*) is asymptotically normal with 

covariance matrix 
-1 -1 

!!=~ ;[k,' which is approximated by 2 -1 
cr ~ for 

k large. Hence the variance of the limiting distribution of /T (-b1T-a) 

is approximated for large k by 

211 
cr cr 2 

cr 

where 1~2 is approximately the variance of the limiting distribution of 
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For other co:rmnents abm;:_t these points J in the case of Durbin' s 

estimator, see McClave [(1973), Section 2]. 

d) The role of the truncation points. In Chapters 2 and 3 we dealt with 

kJ the number of sample autocorrelations. In both cases q < k < T-1 

for a moving average of order q. 

In the original papers no precise directions were given about how 

to choose k in an empir:i.cal situation. The modification introduced in 

Chapter 3 allo>tls for an easier choice of k, in the case of Walker's 

proposal. In Mentz (1972) the exact forms of 
l" w J entering in 

(2.6) are given, so that one can easily write down closed-form expressions 

similar to (3.2)-(3.5) for the exact version dealt with in Chapter 2, and 

then prepare a table similar to Table 3.1. 

In the moving average model the dimension of the minimal sufficient 

statistic is T; the sample size. By considering k sample quantities, 

where k is usually thought of as being much smaller tha,n T [ cf. ( 2 .33)], 

one is omitting a relevant part of the sample information. This fact 

apparently had more important effects on small-sample biases than on 

as;y-mptotic or small-sample variances. In fact the proposalsJ in particular 

that of Durbin that has been studied in greater detail, seem biased but 

quite efficient for most relevant sample sizes. 

e) Corrections for bias) further remarks. In the case of Durbin's 

estimator attempts at correcting small-sample downwards biases; led to 

important increases in variances) both small-sample [McClave, (1973)] and 

asymptotic [cf. (5.24) and (5.27)]. One way to interpret this fact is 
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that as in (d) above, omission of parts of the sufficient statistic led 

to losses of information. Some justificationsabout why would the modifi­

cations reduce the small-sample biases are given by McClave ( 1973). 

f) Relations with maximum likelihood and least squares estimation. 

Durbin's (1959) way to go from the to ex 
T' is to set up a 

likelihood fQ~ction on the basis of the limiting normal distribution of 

the Similarly Walker ( 1961) starts by considering the limiting 

normal distribution of the In this sense the proposals tend to 

approximate, for large T, the maximum likelihood method of estimation. 

However, both authors introduce simplifications to make the mathema­

tical details easier. In terms of our discussion in Section 1.4.3 they 

both come closer to the least squares procedure, the Jacobian being 

neglected. Further the inverse of the covariance matrix is also appro­

ximated. These approximations have no relevance .for asymptotic theory, 

as we showed above, but may be important in small samples, and may con­

tribute at least partially, to explain differences between them and the 

maximurn likelihood estimates. 

g) Robustness to changes in the distribution of the error terms. 

The main part of the theory in Durbin's and Walker's :papers, and 

in our work, has relied upon the assumption of normality of the error 

terms, the Et in ( l.l) or ( l. 7). 

There have been so far no attempts at investigating the robustness 

of estiw~tion procedures for the moving average model in gene~al. We 

may speculate about how well might the presently-considered procedures 

behave in small-samples when the probability distribution of the Et 
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departs signi.ficatively from normality.? in relation to other existing 

proposals"' some of them listed in Section 1.4. 

The procedures in Chapters l tr..rough 5 start by considering 

sample quanti ties and by looking at their asymptotic distributions. 

These turn out to be normal) a result that holds for a wide class of 

distributions of the [see~ for example, Anderson (l97la) "' Sections 

5 ·5 and 5. 7 ·3,. and the comments by Dtrrbin ( 1959), Section 6]. Some other 

results from normal distribution theory are used throughout. 

Hence one is inclined to believe that for moderate-sized samples the 

proposals might tend to show considerable robustness to departures from 

normality in the distribution of the E • t 
It would be relevant to have 

available some information about this point.? possibly tl1.I"ough Monte Carlo 

studies. 

6.2 EstimBtion in Moving Average Models of Hi&her Order. 

Our derivations in the present work_, have been restricted to the 

first-order moving average. We want to corrnnent here abou:t the possible 

extension of the methods of proof to moving average models of higher 

order. These were considered in the original papers by Durbin and Walker. 

The direct extension of the proof of Theorem 2.3 to the case of 

q > l seems quite feasible. The components of the ~22 
in (2.4) are known for all q [see e.g. Anderson (l97;la); Section 5.7.3]. 

~2(£) will be a Toeplitz matrix with equal elements along its central 

diagonals"' and zeroes elsewhere; the components of the inverse of such 

mBtrices are given as functions of the roots of an associated polynomial 

75 



equation in Mentz (1972). It will be necessary to prove some properties 

of these roots; corresponding to lx1 1 < l in Section 2.2. (In fact 

~22 (£) is positive definite} and can therefore be taken as the covariance 

matrix of a stationary moving average process; the argument in Anderson 

[ ( l9Tla);, pp. 224-225 J that we referred to in Section 1.3 ~ together with 

the positive definiteness, will show that half of the roots are less and 

half larger than one is absolute value, as was the case in Section 2.2 

when q = l). These properties would then be used to simplify the 

resulting expressions and to turn them into sums of random vectors whose 

order of dependence is a function of k, so that an extension of the 

procedure in Section 7·3·3 can be developed to give the asymptotic 

normality. 

The evaluation of the limiting covariance matrix might envolve 

heavy algebra, according to our experience in Section 7.3.4. 

The proofs in Sections 4.2 and 4.3 reli..ed upon the use of Lemma 4.4, 

which implies the knowledge of an exact closed-form expression for some 

components of in terms of the 0:. 
J 

parameters. That could also be 

derived from Mentz (1972), since the roots of the polynomial equation 

associated with ~ can be written as functions of the o: .• 
J 

However, the 

amount of algebraic detail in the proof of Theorem 4.6 makes us believe 

that the exact treatment of k as fixed will be extremely laborious. 

An approach such as that of Section 4.4 (applied afterwards in 

Chapter 5) may be more convenient. The approach will then provide the 

approximate behavior for k large, of the parameters of the limiting 

distributions as T ~oo, and be based upon convenient approximations to 



the components of Note however that Durbin [(1959)~ Section 5] 

using a different kind of argu..>nent~ obtained the limiting covariance 

matrix7 valid for large k. 

Finally; and as it was pointed out earlier; the attempts at treating 

k as a f"t.mction of T for the proposal in Chapter· 4 7 similar to what was 

done in Chapter 2; found severe mathematical difficulties; and no complete 

proofs are available so far; even for the first order moving average. 

It should be noted that the main difficulties arose in the analysis 

of the large=sample behavior of where ~ was defined in (4.5) and 

is of order k x k 7 so that its size increases as k increases with T. 

In Chapter 2 we faced a similar situation but there the explicit components 

of could be obtained; because has only a fixed number of 

nonzero central diagonals 7 the number being a function of q and not of 

k or T. Note that ~ has all its components nonzero. 
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7. MATHEMATICAL DETAILS CORRESPONDING TO CHAPTER 2 

7.1 Proof of Theorem. 2.1 (Section 2.3). 

The components corresponding to the second braces of (2.29) will be 

evaluated first. As seen in Section 2.2 the aij in these braces have a 
2krp 

factor x1 ~, if we treat each summand separately, we see that the larger 

contributions come from terms of the form One of the contribu-

/ 2) 2 tions is 2r(l-r or r times 

k -1 2kT kT k -1 k -j T xl 1 ~ -j xl T 
(7 .1) r j ~ I jrj+l,T 

T 
rj+l,T 6 8 fg xl == -;;-sfg xl 

j=l k'T' j=l .!.. 

For large T (and kT) 6 is approximately equal to h1 = a11 a22 -

a12 a21 f 0. Since Irs! < 1, for large enough T the absolute value 

of (7.1) is bounded by a constant times 

s k -1 :k =j kT 
k -1 T s T fg k I .I I T fg kTix

1
] . E (kT-s) lx1 1 s h I I T J IXl 

1 kTixl j=l hl S=1 

(7. 2) 

sfgl . k'I 
(kT 

00 00 

lx1 1
8

) < kT~~l~ , I lx- Is + [s 
hl S=l 

J_ 
S=l 

The condition I x
1

1 < 1 implies that the two series in (7. 2) converge, 

and hence (7 .1) is negligible as T ..,. oo. The argument can be used to 

show that each component in the second braces of (2.29) converges in 

probability to zero. 
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The argument 

because there the 

have to show that 

(7 .3) 

cannot be used with the first braces in (2.29) thoughJ 
kT 

components do not have x
1 

as a common factor. We 

k -1 
T 
l 

j=l 
0 . 

Hence we have to show that given E and o positive, there exists 

(7. 4) 

such that T > T implies that 
0 

k -1 
T 

L 
j=l 

here we use the notation x1 = x1T to emphasize its dependence on T 

(through \ 
r" rpJ • 
..L~ 

Let n be a fixed positive integer function of E and a onlyJ 

tb.at will be made explicit below. We have that 

p{ k'I,-1 
xj r r.+l rr 

j=l J J- lT 

(7. 5) 
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To arrive at the second inequality we used that !x
1

TI < 1, and that 

lr.TI < 1. J . 

Since plim rjT = 0 for j = 2J3, .•. ,n, there exist integers 

T. = T. (E,5) such that T > T. implies that 
J J J 

(7 0 6) 

In the second term of (7.5) we have that 

{ 

.. lx In 
< p lT :> 
- 1-lcxl 1 

> l + ~} 
(7 0 7) 

< P {lx +et! > [(1-!etl) - lT 
~ E] ~ 

1 + 2 

There exists an integer T* = T* (E,5) such that if T > T* 
1 1 1 

then 

(7 0 8) 

So 



because plim x
1

T =: J:i. Hence the first term in ('7. 7) wil.l be less than 

provided only that 

E 

(7. 9) (l~lal) 2 > (E + lal)n. 
1 + .§. 

2 

This defines n as a function of E and a, independently of T or 

Similarly the second term in (7.'7) will be less than 5/3 provided 

T > T* f E "'1 ·2\JU;J say. 

for all T > T , as des ired. 
0 

then (7. 4) holds 

k -1 
A similar argument will show that terms like L i:l i ri+l,T xiT 

converge stochastically to zero. This completes the proof of the theorem. 

Q.E.D. 

7 o 2 Proofs of Lemmas 2.1 and 2. 2 (Section 2. 4J. 

Proof of Lemma 2.1. Suppose that (2.31) holds. Tnen lim k /log T 
T~ oo T 

+ oo3 and 

(=m log a)kT 
- 1 n logT 

( -m log a )kT = n log T 

limT~oo n log T +oo. 

This is turn implies that n log 'I' + k~ log a log (Tn amkT) converges 

to = oo3 which is equivalent to (2.30). 

Suppose now that (2.30) holds but that (2.31) does not. Then there 

exists a subsequence (:eu~ u = 1J2_, •.. } such that for every d > 0:; if 

T is large enough 
u 
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(7 .10) 

multiplying (7.10) by n we deduce that for every d > 0 

(7.11) n 
log Tu - n d kT > 0 . 

u 

If in particular we let d = (-m log a)/n > 0 in (7.11) we contradict 

(2.30). This completes the proof. Q~E.D. 

Proof of Lemma 2.2. Let TJ and E be positive and fixed. For M > 0 

we have that 

But P{ I zTI > M} :S, P{ I zl > M} + E if T is large enough, since by 

hypothesis ZT converges in distribution to Z; if M is chosen appro­

priately, then P(Jzl > M} < E too, by hypothesis. For that choice of 

M, P{IYTI > TJ/M} < E if T is large enough, since YT converges in 

probability to 0. This completes the proof. Q.E.D. 
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'7.3 Proof of Theorem 2.3 (Section 2.4). 

'7. 3.1 Part 2 (Simplifying the rn,., (j) 1 s) . 
.!. 

We substitute (2.3'7) into (2o34) and find that we have to deal with 

= [ ~T '\ T(j-l) r "T - p (J 
j=l ' J y J 

The two quantities in brackets in the last line are of the same nature, 

and it will be shown below that the first one, normalized by /T , has 

a limiting normal distribution. Since the second bracket has a factor 
AkT AkT 

of x and plim x = OJ we see that the claim will be proved lT T-7 oo lT 
AkT 

if plim.,., /T I x1 T,l P (1) = 0. 
l.-1' 00 ·- y 

Let E > 0 be given. For any fixed i] satisfying.? say: 

0 < TJ < (1/2)(1o:l + 1), we have that lex:! + T] < 1, and by Lemma 2.1 

(7 013) 

Hence there exists an integer T1 = T1 (E) such that if T > T
1

, then 

AkT 
/T (jo:j + T]) < E o Hence if T > T

1 
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(7 014) 

This last expression can in turn be made arbitrarily small, because 

plim x1T = - a, as T -? oo 0 

Hence we concentrate on From (2. 29) and the argument 

following that expression, m1 , 'I' (j) is the part of 

(7 .15) 

n:ot having as a factor. To find the desired limiting distribution 

this can be taken as 

(7 .16) 
~ (/l-4r2 

+ 1) + ,j[2)(1-r2) + ~(k4r2 -3ll 
-? ( /1-4 r 2 

+ 1) 

= xj [1 + j ( 1 - 4r
2 

)] = xiT ( l + j /1-4r2) , 
lT Jl-4r2 +1 

84 



7.3.2 Part 3 (Substituting parameters for random variables in the 

Then 

mlJT(j )' s). 

Since lx1 1 = lex! < lJ there exists YJ > o such that !x
1 

+ TJI < L 

k -1 
T 

fi l 
j=l 

AB in the proof of (7.4) let us introduce a fixed integer n7 to be 

specified below, so that (7.17) becomes bounded by 

(7 .18) 

< 

+ 

where we have used the Cauchy~Schwarz inequality. 



In the first factor of the first term of (7.18) 7 for any fixed n, 

from the fact that plim x1T = i1 ~ we conclude that the whole factor 

converges in probability to zero. In the second factor we note that 

/T (c2T' c
3

T, ••• ,cnT) is asymptotically normally distributed with zero 

expectations and finite variances and covariances [cf. Anderson (197la), 

Corollary 8. 4.1]. Hence the distribution of the sum behaves asymptotically 

like that of a linear combination of the squares of n-1 normal random 

variables, with weights given by the (i1+~)
2j. It follows that its 

square root satisfies the hypotheses of the ZT of Lemma 2.2, and hence 

that the first term converges in probability to zero as T ~ oo. 

To deal with the second term in (7 .18) we require that I x1T/ (x1 +r~) I < 1, 

with high probability. But for ~ > o, 

p{ xlT <l} ~ P {lxlTI < lil+~l} "' xl+~ 

(7 .19) 2: P {lxlTI < lill + ~} =: P {1xlTI - IX1 1 < ~} 

say, and is arbitrarily close to 1 if T is sufficiently large. 

For all choices of T satisfYing (7.19) we have that 
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oo xlT J xl J 

{ [( )
0 ( ,.., ) 0]2 } 

P 5~n Xl+~ - Xl+~ > E 

(7. 20) 

and the second probability will be less than some arbitrarily small 5 > 0. 

In the first probability, since both arg·wnents are less than one in absolute 

value, the infinite series can be evaluated explicitly, its value being 

+ 1 - (,..,x.l )2 
X +Y] 

1 

Since x1T ~x1 , this converges in probability to zero as T ~ oo, for any 

fixed no Hence the right hand side of (7.20) can be made arbitrarily small 

for T large enough. This shows that the first factor of the second term 

of (7.18) is asymptotically negligible. 

In the second factor we apply Chebyshev's inequality. For any E > o, 
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p 

(7 0 21) 

= 12 ~ (il+n)2(j...J.) 1 ' g( ) ( ) 
L 'I T L tp· Et +CXEt-1 Et+j +CXEt+j-1 

E j=n+l s,t 

(E +CXE 1 )(E .+CXE . 1 ) • 
S S= S+J S+J-

The expectations vanish unless t=s, t=s~l or t-l=s, because the E 1 S 
t 

are independent and have zero expectations. There are less than 3T such 

nonvanishing expectations, each one of which is bounded by the same constant, 

because the Et's are normally distributed. Hence the absolute value of 

(7.21) is bounded by a constant times 

(7. 22) 1 
2 

E 

~ I ,., . 12 c j -1 ) 
L :X +TJ 

j=n+l 1-

\ "" + \2n 
xl TJ 

This last expression defines the choice of n, as a function of ex, E, 

etc., but independently of T and kT' so that the right-hand side of 

(7.21) is made arbitrarily small. 

This completes the proof that (7.18) converges in probability to 

zero. 
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7o3o3 Part l.j. (The asymptotic normality). 

As in (2. 43) let 

(7. 23) 
1 T 

.Q =- ' w T L tT" ) IT t=l 

wb.ere the WtT 1 s are defined i.n (2. 44.). To develop the asymptotic theory 

and in order to simplify the calculationsy one can take as definition of' 

the WtTvs for all tJ t = 1J2J ••• ,T3 the first line of (2.44). There 

would be ~/2 extra terms added in the sum over t~ but this is 

asymptotically negligible compared with the existing TkT terms, since 

k~/T -+ 0 as T~ OOo Hence we take 

kT 
m(j ~1) ('7 0 24) wtT l: 

u2(l+a2) (yt Yt+j -~yt Yt+j), t - 1)2.1"""7T J 

j=O 

and 

m(-1) 

(7 0 25) 

(7o25) can be written more compactly as m(j) = s; (~a:)j[l+j(l...a:2 )/(l+a2 )] 

where Bj equals ~ when j == -1 and equals 1 when j == 0 ,1, ••• ,kT~l. 

Taken as a stochastic process, {WtT} is weakly stationary, has 

zero expectations, is finitely dependent of order kT+l, and finitely 



correlated of order l. The dependence follows because WsT depends on 

and hence on Et ~ ••• , E J -1 .... ' . ···t+k ·.' .. T 
while Wt+s,T depends 

on Yt+s'•••JYt+s+kT and hence on 

tion argument follows because 

The correla-

(7 0 26) 

l 

[cr (0)] 2 
y 

4 cr 

[cr (0)]
2 

y 

(y t+sy t+s+j'- ~y t+sy t+s+j 1 ) 

kT kT 
2:: L m(J¥1) m(j'-1) d .. , (s) 

j=O j'=O JJ 

m(j-l) m(j' =l) d .. , (s) o 

JJ 

Here ~(ytyt+i Yt+s Yt+s+j - ~YtYt+i GYt+syt+s+j) = cr4dij(s), and the 

d .. (s) are given by 
lJ 
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r-. 2 
d-. 0 (s) 

J_J 
2 (l +(XC:) 

:1 S=O, i==j=O~ 

1 +_3CX2-KX4 
J S==O, i=j=1, 

(1+Ci) 
2 

J S=O, i==j>l, 

a:x (l +CX2) 
J s==O;~ (i, j) = (0,1) or (1, 0)' 

""a (l+a?) J s==O~ I i=j I =1.? (i;~ j) ~ (o Jl) or (1,0), 

- a:x2 
J 8==1 (-1) J i=j=O, 

(7 0 27) 
= a2 

J S==1 ( -1):~ i=j>O,, 

== a:x (1-KX2) J S=1 ( -1)' i=O:~ j==1 (i=l, j =0) J 

1 2) 
=: ~ ~1 +a J S=l ( -1)' i=j -1, j>l)l (i=:j+1, j>O)' 

; 2 
S==l ( -1)' i=O, j=2 (i=2, j=O)' = :a:x J 

2 
S=l ( -1)' i=j =2, j>2 (i=j+2, j>O ), =a J 

= o, all other possibilities. 

To prove (7. 27) we write y t = Et + aEt=.l for each index t, enumerate 

all possible cases, and use the fact that the Et's are independent, normal 

and have zero expected values. Alternatively one could use formula (8o18) 

in Section 8.4.2 directly. 

We proceed now as in Anderson [ (1971a), ppo 538=539]. Let (NT} be 

a sequence of integers (~~nctions of T) such that kT/NT ~ 0 as T ~oo. 

Let MT be the integer part of T/NT. Then QT is asymptotically 

equivalent to 
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(7. 28) 1 

1M; 

Even for finite T, the approximation problem is minor because NT/T 

may differ only slightly from 1/MT· In (7.28) we defined 

(7. 29) 

1 

/NT 

1 

IN; 

NT-k.r 

i~l W(j-1) NT+i,T' 

j=l;2, ••• ,~' 

+· 0. + w ,· , T 

the last definition is void if NTMT = T, in which case we set RT = 0. 

We first show that the terms involving the random variables YjT and 

RT converge in probability to 0 as T ~oo. To do so it suffices to 

prove that the corresponding second-order moments converge to o, because 

the expected values are zero for each T. This corresponds to proving 

mean-square convergence to 0. Now 

~ 
_1_ l 
M N .. 1 l T T J,J = 

NT 

E GW.N k_ T w.,N k_+·' T s.s'=N -k +1 J T--~+s, J T--~ s ' 
' T T 
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If jtj' the expectations vanish~ because then the corresponding 

WV s are independent 3 their subindices differing by at least NT=kTo For 

j=j'J the expectations vanish unless ls~s'l :S,.l~ because of (7.27). 

Then by stationarity of' the 

(7 0 31) 

rw 1 
l tT' process 3 (7.30) equals 

. T~l evf.T + 2 TSI=:.l. ~wlT w2T 
s:;;,:l .L · (

k - k -2 ) 

whieh corrverges to zero as 'l' ~ oo since, by hypothesis.il kT/NT -:} Oo 

That the seC":ond moments in ('7. 31) remain finite as T -+ oo follows from 

(7 o 26) and ('7. 27) J once we note that the m (j) 1 s are exponential 

functions of a 3 and lal < .1. 

The same kind of argument can be used with R,.p: 

and this tends to zero since.il by hypothesis:> 
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N /'I' tends to zero as T 



It follows that it suffices to find the limiting distribution of 

(7 .33) 

where by· construction the 

and for all j 

(7. 34) 

and T, & Z "T = 0, J -

If we now write (7.33) as 

(7. 35) Q* = 
T 

we have that ~'f_~1- z "T = o, 
J~ . J 

are independent, identically distributed, 

Central Limit Theorem [see Lo~ve (1963)J Chapter VI]; for that it suffices 

to prove that for some 5 > o, 

(7. 36) 

We choose 5 = 2. Then 



where 

~j 

E 
j=l 

4 z.rn G .J .... 
,-.. 2 2 

r-f- rcz 1 L"'T ,47 jT / 

(7. 38) 

and it suffices to show that (7.37) converges to zero as T ~coil or (more 

strongly) that (7.38) is bounded uniformly in T. 

Note that a fourth~order moment of W includes the expectation of 

a product of eight of the (in partic·u~ar that of 
8 

€ when S=t=q=v, 

and J'"'O in the defini t:lon ('7. 24) of each W).; since the E 1 s are normaly 

these eighth~order moments are finite. If instead we did not assume 

normality of the E1 SJ some assumption abuu.t their eighth=order moments 

wov.ld be cal.led fer. In any caseJ any fou.:rth=order moment of the W' s 

is boundedJ uniforml.;;r in fTI 
-' 0 

To anal.yze (7.38) we consider separately the foll.owing five cases~ 

l) t=So"q=v. 'I.nere are terms so that their -----· 
contribution is r.egligihle as T ~ co. 

2) t=:s=q~v. Tbere are 4 (N~r=k1,) (N,I-kT=l) terms of the form 

~w;T WvTJ so that trleir contribution to (7.38) remains 

b d d T N .L th t l· '"J ' ) "-N- k 1 1j·2 
oun e as · ? co. o ue · a 'f ~l~T=K'I' \) T = T= . 1 l~ converges 

to 4 as T ""'co. 
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3) t=sfq=v. There are 3(NT-kT)(NT-kT-l) terms ~~T w!T' 

so that their contribution is also negligible. 

such termso Let us consider the subcase t < s < q, since the 

other ones are treated similarly. If It-s! > kT+l, ~T and 

WsT are independent and the expectation vanishes unless 

ls-ql ~ 1; there are at most 2(NT-kT)(kT+l) such terms. 

If lt=sl ~ kT+l, then w;T and W
8

T are not independent 

and the expectation may not vanish if I s-ql :S_ kT +1; there .. 

are at most (NT-kT)[2(kT+l)]
2 

= 4(NT-kT)(kT+l)
2 

such terms. 

5) All subindices differ. There are (N -k ) (N -k -1) (N -k_-2) T T T T T -~ 

(7. 39) 

(NT-kT-3) such terms. Consider the subcase v < t < s < q, 

since the other ones are treated similarly. By definition 

(7.24), and recalling the yt = Et + aEt=l' we see that (7.38) 

is composed of terms equal to a constant times 

1 

~ 

kT 
I m(j-l)m(j 1 =l)m(j 1 '-l)m(j'":.I) 

j,ji ,j' i ,j' i '=0 

plus other similar terms with some of the subindices, or all of 

them, reduced by 1. 



In (7 .39) 3 if Jf.=O J then Ev and Ev+j are independent, and 

since ~E = 0 the contrib"u.tion vanishes. If j=:O~ but j 1 ,?o!! aga:in 
v 

we have a zero expectation. By a similar argument we can see that only 

the case j=j 1 = j 11 = jm ""' 0 remains to be studied; but then we have 

that 

(7.40) 

For the other terms with subindices reduced by one~ a similar argu= 

ment applies if vJt.9sJ and q differ b~r at least (say) 3 units. 

Hence it suffices to show that in t~erms .like (7.39), when v=t..? 

It-s I :5, kT +lJ Is -qJ :S kT +1, t < s < q..? the corresponding contribution 

to ('7 .. 37) tends to zero as T -+co. In the analysis of case 4) above we 

argued that there are at most 4 (N1,-kT) (kT + 1 )
2 

such terms. Now, by the 

Cauchy=Schwarz inequality.:> the expectation pa:rt is bounded, for all 

choices of subindices..? by 

(7.41) 
8 8 8 

105 ~ + ~ 106 u 

so that the contribution is bounded by 

(7 0 42) .106 

which is a:symptotical1y equivalent to 
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(7. 43) 

in turn this is equivalent to a constant times 

(7. 44) 

Since Recall that 5 ': 
J 

can equal only 1 

and the sum over j is finite because < 1, 

as T ~ oo, which is what we wanted to prove. 

From (7.34) we see that 

(7. 45) 

k~/T -7 0 as T _,. oo, 

(7. 44) tends to zero 

By Liapunov's Central Limit Theorem we conclude that (2.43) or (7.23) is 

asymptotically normally distributed with parameters 0 and T given in 

(2.45). 

Note: From the proof above it follows that random variables like (7.23), 

which are (normaJ..ized) linear combinations of random variables finitely 

dependent of an order (kT+l in our case) that increases with T, are 

asymptotically normal provided the rate of increase of the order of 

dependence is adequately smaller than T(k~/T ~ 0 in our case), and 

that the weights (the m(j) in our case) are summable. 



Recently Berk (1973) proved a theorem that deals with a similar situation. 

This same author [Berk (1974)] used an argument parallel to that used 

above to prove the asymptotic normality of the autoregressive spectral 

estimator; in his case it turned out that he needed ~/T -+ 0 (in our 

notation). 

7 o 3 o l+ Part 5 (T'ne asymptotic variance). 

We first note that 

()() 2. L a J 
j=O 

Next 

(7 0 4'7) 

1 
-· --

l-et 

R 
.1. 

2 ~ 

2 2 _ _;::; 
(l+Ct ) g'w:i.'I' 

k 
T 2 

\ m ( j -1) d .. ( 0) + 2 
L ;JJ . 

j=O 
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I 
j=l 

k =l T --
[ m(j-1) m(j) 

j=l 



k -1 
T r m (j -1) m (j)' 

j==l 

which converges, as T ~ oo, to 

1 + r:i + o:4 + (l-ta2 )
2 

[ m2 (j-l) + 2CX(l+o:
2

) [ m(j-1) m(j) 
j=2 j=l 

2 4 2 
2 

2 2 
2 00 

2 = 1 +O: +a - (l+o:) m (o) + ,(l+o:) ~ m (j-1) 

(7. 48) 

2 
= - 0: + 

Similarly, 

j=l 

00 

+ CO:(l+o:2 ) I m(j-1) m(j) 
j=l ' 

2 00 00 

(l+o:
2

) [ m
2

(j-l) + 2CX(l+o:
2

) £ m(j-1) m(j). 
j=l j=l 

m(j-1) m(j' -1) d .. , (1) 
JJ 

k -2 
T 

+ I m(j-1) m(j+l) d .. +2 (1) 
J,J j=O 
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~-1 

l: m(j-1) m(j) 
j=1 

~-2 

l m(j-1) m(j+1) 
j=1 

k -1 
T 
~ m(j-1) m(j) 

j=1 

k -1 
T L m(j-1) m(j) + a

2 

j=1 

k -2 
T 
L m(j-1) m(j+1) , 

j=1 

which converges as T ~oo to 
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(7-50) 

00 

+oF I m(j-l) m(j+l) • 
j=l 

Hence R
1 

+ 2R
2 

converges as T ~oo to 

00 

+ L m(j-l) m(j) [4a(l~2 )J 
j=l 

00 

+ L m( j -l) m( j+l) [20:2 ] 
j=l 

00 00 

+ 4a(l~2 ) l m(j) m(j+l) + 2a2 r m(j) m(j+2) 0 

j=O j=O 

Next we evaluate the following: 
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(7.52) 

00 2 00 2" 
Im(j)~ 1exJ 

j=O j=O ( 
l-ex2)2 l+j --
ld 

00 

2" l-ex
2 00 

2" (1-ex
2

)
2 

00 

2 2" I ex J + 2 -- 2: jex J + -- [ j ex J ; 
j=O l +ex

2 
j=l l-+a

2 
j=l 

r m(j) m(j+l) = f (-ex)
2
j+l (l+,j l-~. )[l+(j+l) l-ex

2
] 

j=O j=O l-+a
2 

l-+a
2 

00 

= - ex L ex2j 
j=O 

00 2 
-ex I m(j) 

j=O 

l-~ ~ 2j -ex--Lex 
l-+a

2 
j=O 

l-ex 

( 2) l+j l+CX2 • 

Using these values the last line of (7.51) becomes: 

4 4 00 2 -5~ + 120 2 + (1+4 ex2 + Q ) L m (j) 

(l+ex2) j=O 
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+ (1~2r I i a
2j] 4cx2~1-c:x2L [I ifj 

1 +a:
2 

j=1 1-t-ci j=O 

' if 
00 2~ + ==....... [ jC:X J 

1 +a:
2 

j=1 

( 7 ·53) 

120:
4 00 [(1~2 )(Hi) - ¥:;.2 ld] - 50:2 + 2 + r a2j 

(1+0:2) j=O 1+0:2 
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co 

I l a:2j 
j=1 

2 2 
(-50:2 + a:2)(1+a:2) + (1-0:2) (1+a:2) + 120:4 + 2a:2(l+a:4) 

(1+a:2) 
2 

2 4 6 1-3a: + 30: - a 

( 1 +a:2) 
2 
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8. MATHEMATICAL DETAILS CORRESPONDING TO CHAPTER 4. 

8.1 Proofs of Lemmas 4.2 and 4.3 (Section 4.2). 

Proof of Lemma 4.2. 

We need to show that pli~~ 
00 

( 1/ T) ~=l ( z~ - ~z~) = 0. Let us 

write T = mp+rJ where p and r are integers and 0 < r < m. Let 

also 

(8.1) l 
T 

ill p-1 

L < ~ l 
. l T J== s=O 

l ill l 
<- [ -
-ill j=l p 

p-1 

l 
s=O 

z.+ J Sill 

z.+ J Sill 

T 
+1 

T [ zt 
t=pm+l 

+1 
T 

T 

l zt 
t=pm+l 

(If. r=O the second term in the right-hand side does not exist). By 

hypothesis, in the first sum of the last line above, and for the j-th 

subsequence (j == l-'2Y ••• -'m), II:~:; zj+sJPI is arbitrarily small if 

p is sufficiently large,; if each of these summands becomes bounded by, 

say, ij. > o, 
J 

then the· whole. term is bounded by 11 == max. Tj •• 
J J 

In the 

second sum there are at most m summands; since each subsequence con-

verges by hypothesis, each term. I z I s 
is arbitrarily small if s is 

large enough, and eventually I z I < 11; s then the whole sum will be bounded 

by (m/T) 11 ~ '11• This completes the proof because il is arbitrary when T 

can be chosen arbitrarily large. Q.E.D. 
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Proof of Lemma 4.3. 

From (1.12) we see that for fixed i and j the random variables 

have common expectation. Since E~ is 
(., 

normal, it also follows that Var(zt) is finite and does not change with 

t. Let us consider iS j, because the same argument holds for i ~ j; 

z.._ 
.... 

depends on and €t ., 
-l 

while depends 

on 

and are uncorrelated. 

and €t+ .; S-l 

It follows that 

if lsf > j-i+l then 

is a sequence of 

finitely correlated random variables, with finite common second-order 

moments. By Lemma 4.2 the weak law of large numbers holds, and shows 

that 

( 8.2) plim...... 
'1'~00 

Z, 
~G 

This result, together with (4.10), completes the proof of the ler:mna. Q.E.D. 

8.2 Proof of Theorem 4.1 (Section 4.2). 

We have that 

k-1 

( 8 ·3) 
L ( plim...... b .T)( plim...... b "+1 T) ~~00 l 1~00 l • i=O , 

k-1 
L (plim...... b.T)2 

• O 'l'~oo l 
l= 

since all relevant plim's exist. The numerator of (8.3) is evaluated 

as follows: 
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The denominator of (8.3) is equal to 

The first line of (4.9) follows immediately and the second line is an 

algebraic rearrangement of terms. Q.E.D. 

8.3 Proof of Corollary 4.5 (Section 4.2). 

The right-handside of (4.9) is (by long division and appro-

priate collection of terms) 
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( 8.6) 

, a4k+l(l-a2)(-alO + k(l~2)(3a6-l) + a2k[alo_k(l-a2)a6]} 
T (l~2k)(l~2k+6) - 2ka2k+2( 1~2) . 

The denominator of each fraction approaches l as k ~oo. Q.E.D. 

8.4 Proof of Theorem 4.6 (Section 4.~. 

A * 8.4.1 Part l [Asymptotic normality of /T (~T-~ )]. 

In the notation of Section 4.2, ~* has components 

2k+2-2J" l-ex -

l 
2k+2 -a 

j 1,2, ••• ,k ; 

in fact we will want to extend the range of (8.7) to include j=O (f3~ = l) 

and k+ l ( f3~+ 1 = 0). Since ,i = l we now have that 

(8.8) F~ = ~ = a~ , 

where ~ = ( l, 0, ••• , 0) 1 
, and 

so that 
1\ -l 13 = - M IlL. and f3* 
~T ~T ~~ ~ 

.,.l 
- ~ .9,• Then 
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1m (A *) 1m ( -1 -1 ) v j_ ~T ~ ~ = - V T ~ ~ - ~ ;! 

(8. 10) 

It is easily checked that if ! + ~ is nonsingular 

(8. 11) 

( ) 
-1 . -1 

For f; = ~ - ~ f: , ! + !;; = ~ ~ is nonsingular with probability 

one because .~ has this property (see Section 4.1) and ~ is also non­

singular. (In fact ~ of any order is nonsingular for any value of aJ 

while the condition Ja J < 1 makes ~ of any order posi tiYe definite). 

We deduce that plimT~<iiiO 

plimT-+oo (! + ~) -1 = l.> 

plimT.. A = OJ 
=,tl 00 ,.._, ('>'>J 

and that /T [:; has asymptotically normal components. 

[See e.g. Anderson (197la), Section 8.4.2]. Hence plimT~oo~ (f+~)-1~2 = £J 

and (8.10) has the same limiting distribution as 

(8.12) 

Since /T (~- ~) has asymptotically normal components, and 
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plim (m - q) == 0, the third summand inside the brackets in (8.12) T~oo ~T ...., ,.... 

is asymptotically negligible, and (8.12) has the same limiting distri-

bution as 

(8.13) 

8.4.2 Part 2 [Asymptotic covariance matrix of /T (~T + ~ ~*)]. 

We now evaluate (4.26). Using (8.7) and (1.7) we have that 

(8.14) 
k k h l~2k+2-2h r [3~ Yt-h = I (-a) 2k+2 [Et-h-(-c:t)Et-h-1] 

h==O h==O l~ 

l f k+l k+2 
·l·· E -(-a) E ( )-CX t t- k+l 

k 2 k kh ~ [(-a) Et-(-a)Et-(k+l) + (l-ex ) L (-a) - Et-h_J 
h==l 

lll 



say, where 

(8. 15) 
(l-CX2) (-C:x 9k+2(-ex)k-h 

l-CX2k+2 

Hence (4.26) reduces to 

(8.16) limT 
~(X) 

1 T 
T ' L 

s,t=k+l 

We have to evaluate the expectation, namely 

(8.17) ~(yt . Et hy . E h 1 ) 
-l - s-J s- (!( Et • +ex Et . 1) ( E • + ex E . 1) Et hE h r 

-l -l- S-J S-J- - S-

!/( Et . Et h E . E hI + ex Et . Et h E . 1 E h t 
-l - S-J s- -l - S-J- s-

+ ex E . E E . E 
1 

+ ex2 E E E E ) 
t-l-1 t-h S-J s-h t-i-1 t-h s-j-1 s-h' 

Let {~E(s)} denote the covariance se~uence of the Et's, so that 

~ (s) 
E 

2 = ~ for s=OJ and equal to 0 ·for s~O. Since by hypothesis the 

Et' s are normalJ we have that [see for example Anderson (197la), Section 

8.2] 
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(8.18) 

where 

(8.19) 

o- (i-h)o- (h 1 -j) + o- (s-t+i-j) o- (t-s+h' -h) + o- (s-t+i-h 1 ) 
E E E E E 

o- (s-t+i-j) o- (t-s+h'-h) 
E E 

4 
() 

' 

o- (s-t+i-h') o- (t-s+j-h) 
E E 

4 
() 

' 

o- ( t -s + j -h ) , 
E 

i=h and j=h 1 , for every s and t, 

h 1 =h+(j-i) 
' 

for S -t=j -i=h I -h) 

hI =j+i-h, for S -t=h I -i=j -h, 

and all other possibilities vanish. Proceeding in a similar wa;y with 

the other three terms of (8.17), we conclude that 

(8. 20) 4 
() i=h and j=h 1

, for every s and t, 

4 
= CXo- ' i=h and j+l=h', for every s and t, 

or i+l=h and j=h', for every s and t, 

2 4 =a o- , i+l=h and j+l=hY, for every s and t, 

£!:_ h' =j+i-h for s-t=h' -i=j-h, 

4 
= CXo- ' h'=h+l+(j-i) for s-t=j-i+l=h'-h, 

~h'=i+j+l-h for s-t=h'-i=j+l-h, 
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£E. h'=h-l+(j=i) for s-t=j-i-l=h' -h, 

2 4 
=a rr, h'=h+(j-i) for s-t=j-i=h'-h, 

9.!, h' =i+j+2-h for s-t=h' -i-l=j-h+l, 

0 , otherwise, 

Note that in the last three equalitiesJ t and s are restricted by 

conditions such as t-s=i-.j~ t-s=h-h 1 , or the like; hence there are less 

than 2T(k+2) nonzero contributions and as T ~co their total contribution 

to (8.16) remains bounded, That is not the case for the first three 

equalities though. We analyse these first, Let us take 
2 

rr = 1 again, 

The contribution of the first three lines of (8,20) is T times 

(8, 21) 

[
(l-CX2 )a2k+2j2 {"'. r_ ) - (i +j) + ( ) - (i+j+ 1) 

== 2k+~2 ' ex a -ft 
l.....CX ' 

(.a)- ( i+ j +2 ~' -· 0 . 

For fixed i and jJ j :;:_ i, there are T=(k+l) + 1-(j-i) cases 

where t-s=j-i, and similar numbers when t-s=h-iJ etc. Hence as T ~co 

such numbers divided by T tend to 1, and hence for j > i (8.16) is 

equal to 

114 



(8. 22) 
k+l-(j-i) min{k-(j-i)+2,k+l} 

(l-+a2) h[=o rhrh+ (J· -l· ) + a ~ r r ( . . ) 
h- {0 1 (• . )} h h+ J-l -1 -max , - J-l 

The sums in (8.22) are evaluated as follows: 

k+l-i_j-i) k+l-(j-i) 
(8. 23) [ rhrh+ (. _.) = r0r. _. + L 

h=O J l . J l h=l 

= r + j-i 

k+2- (j -i) 

(8.24) h~o rhrh+(j-i)-1 =.rJ,~i-1 + 

r(l..CX2 )a2k+2 ]2 (..a) -2h- (j -i) 

[ l..CX2k+2 J 

(..a )~k-i-4- (j -i) k+lf(j -i) a2 (k-h) 

h=l 

(..a )2k+ 1 + (j -i) 

l..CX2k+4 -2 (j -i) 
------, j>i. 

l..CX2 
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k+l- (j -i) 
(8.25) t YY · · =y + 

h-1 .. ) h h+(J-~)-1 1 - - J-~ 
2 

(l-0:2k+2) 

(8. 26) 
k- (j -i) 

I 1h1h+ (j -i )+1 = 1 (j -i)+l + 
h=O 

2 
. (1-0:2) 

(l-0:2k+2) 
2 

2k-2 (j -i) l...a 
j > i 

( -0: )2k+3+ (j =i) 

In the fourth sum in (8.22) we have that 0 ~ i+j-h ~ k+l if and 

only if i+j-(k+l) ~ h ~ i+j, so that the sum is 

min{i+j,k+l} i+j 

~ ~h~ · + · -h = r 1h1 · + · -h , 
h=max{O,i+j-(k+l)} ~ J h=O ~ J 

i+j < k+l ' 

(8. 27) 

k+l 
- ~ yhy . + . h ' i + j > k+ 1 • 

h=i+j-(k+l) ~ J-

Using the same type of argument we are led to evaluate the following 

sums: 

(8. 28) 
i+j 
~ 2 +("+"-l)(-a:)4k+4-(i+j) 
L /h/.+.-h = Y;+J. ~ J h=O ~ J ..._ 
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2 ) 
(l-0:2k+2) 

i+j < k+l 



kB 2 2 

(8.29) ~ /'h/' .. h = [(2k+3)-(i+j)](-cx)4k+4-(i+j) ~(_1..cx_)~2' 
h=i+j-(k+1) l+J- (1-CX2k+2) 

i+j > k+l . 

2 ' 
(1-CX2k+2) 

i+j ~ k ' 

2 

= [ (2~+2)-(i+j)] (-CX)4k+3-(i+j) _.._(1_-CX_2_.)~' i+j > k. 
2 

(1-CX2k+2) 

[ (2k+1)-(i+j)] (..cx)4k+2-(i+j) ' i +j > k=1 • 

Note that as in (8.21), 

(8. 32) 

With this background we now find fijl 
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and f .. 
2 

to use in (4. 27). 
lJ 



2 { 1-CX2 2 2k+2 1-CX2k+2} t 1-CX2 2 
(8.33) f. ·1 = (1 -ta ) Yo+( 2k+2) (-a) 2 +a 11+( 2k+2) 

11 1-CX 1..ct 1-CX .. 

(8. 34) 

(8.35) f. . 1 
1,1 +r, 

_ 2 .. 1-CX2:. ( rv \,_.,2k+2 
.(1-ta )y 1 -tay 0 -tay 2 == Ci - 2k+2 ......._ Y. 

1-CX 

2 
_(:___2_.)~ ( rv )2k+ 1 +r 

(1 -t(X2 }v -+ay -+ay + ~ 1-CX -'""""' 
I r r-1 rt 1 . 2 1 rv2 

{1-Ci2k+2) """" 

{ (1 -ta2 ) C('-0!: ) (1 ..a2k+2 -2r) -+a (1 -a2k+4 -2r) -KX (..ex) 2 (1 .a2k+2 -2r)} 

= 0 ' r = 2,3, ..• ,k-1. 
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2 } - . l~k+2 {2+4a (..a) -1 
1..0: . 

i+j=k+l . 

By the same type of substitutions it is easily verified that 

(8.38) fij 2 = 0 , i+j < k+l or i+j > k+l • 

Since F is symmetric, this completes the proof of (4.28) and (4.29). 
"' 

119 



3.4.3 Part 3 [Asymptotic variance of fi (aT.a*)]. 

Using (4.30) we first evaluate the partial derivatives to be used in 

(4.31). 

(8.39) 

k 2 k=l 
( '*· + * l '\ '* ~ 2A·*. ~ A"X' •• ;A*.' 
,t'.lt'.+~,.L (3. ""' L ""'""' 1 

C,o: * J = J .L i=O l J i=O l l + 
~ = - ~-----::-k,.;_..--2....,..2~~----

dt''. * 
J ( ~ ~~ ) 

i=O 

j = 1,-2,)1 ••• j k ' 

where from (8" 7) J (3~ = 1 and t'~+l = 0. 

k-1 * * The sum L i=O t'it'i+l was evaluated in the proof o.f Theorem 4.1, 

and a similar calculation shows that 

(8.40) 

Hence we ha;ve that 

k 2 0 0 k~l } 
'\ A* _0 (.n )' J 1- _(X2k+2=2J) '\ A*A* 
L ""' · '- \ . .1 L ·""' ·""' o +-·o J ·o JJl.· 

J= J= 

(8.41) 
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where 

(8.42) 

With the notation of (4. 14) with CJ2 == 1, the elements of H defined ..... 

in (4.25) are 

h .. 
lJ 

k k 
\ \ imf nj 
L L CJ mnCJ 

m==l n==l 

k k-1 
\ im mj ( " == flll L CJ CJ + fl21 L 

m==l m==l 

im m+l,j i,m+l mj) 
() () +() () 

(8. 43) 
k-1 . k . k . k 1 . + f \ liD -m,J + f \ lm + -m,J 

1 k 1 2 L CJ CJ lk2 L CJ CJ 
' - ' m==l m==l 

k k 
\ im mj ( t" 

flll L CJ CJ + fl21 L 
m==l m==l 

im m+l,j+ i,m+l mj) 
CJG cr CJ 

~ ~im~k-m,j + f ~ im k+l-m,j 
+ f L v v lk2 L CJ CJ ' l,k-1,2 m==l m==l 

the latter because 
o· () J o, k+l,j 

u o, and hence we can include the k-th 

summand in each sum. 

Substitution in (4.31) gives 

v = 
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(8. 44) 
4k+4 +a 

~ 3:X2k+2 I (..a )j -i h .. + a4k+4 
.. 1. lJ 
lJ J=: 

because h .. = h ... 
lJ Jl 

The sum inside the square brackets will now be written in terms of 

the f. . introduced in (8. 43) j and hence will contain the four terms 
lJS 

that will be calculated in the sequel. The first such term is 

k 

f111 I 
m=l 

(8. 45) 

~ ~im~j {(~)i+j=~2k+2(~)j-i~4k+4(~)-i=j} 
i,j=l 

By direct evaluation we find that for m = 1J2.9 ••• .?k, 

(8. 46) 

(8.47) 
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~ 
i,j=l 



[ 
k .. ~ 2 

(8.48) .L (..a)\lm 
1=1 ~ 

m2a2m(l..0:2k+2) 
2 

+2 (k+l)a2k+2 (1 ..a2k+2) (m:x2m -m) + (k+1 )2a4k+4 (a2m -ta-2m _2 ) 

(1..0:2) 2 (1..a2k+2) 2 

r k .. lj2 
(8.49) !_j~l(..afJ()Jffi 

m2a-2m(1 ..a2k+2) 
2 

+2 (k+1 ) (1 ..a2k+2) (m-m:x-2m)+ (k+ 1 )2 (cx2m-ta-2m _2 ) 
2 2 

(1...0:2) (1..0:2k+2) 

(8. 50) 

Hence the factor of f 111 in (8.45) is 

(8.51) 
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Next we note that 

k k [ k k I m2CX-2m = cx-2k ~ (m=k+k)2cx2 (k-m) = cx-2k ~ (k-mlcx2 (k-m) +k2 r cx2 (k-m) 

m=l m=1 m=1 m=l 

=2k r (k=m)cx2 (k-m)l 
m=1 J 

(8. 52) = cx-21{ ~ m2cx2m+k2 l cx2m_2k ! mcfm-k2CX2k_k%2k+k2+2k2CX2kl 

l m=1 m=1 m=l J 

(8~ 53) 

Substitution in (8.51) leads to 

r { m2cx2m(l-CX2k+2 )
2 

+mifm4 (k+ 1 )cx2k+2 (1 -CX2k+2 )-te:t2m4 (k+ 1 )2cx4k+4 

m=1 
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+ 4 (k+ 1 )2clk+4] +m 23X2k+2 (1 ..a2k+2) -m4 (k+ 1 )cx2k+2 ( 1 ..a2k+2) 2 2} 

(8.55) 

\'22m 2m 2m where we have summed L m ex , :[ .niX and L a • 'I'his expression 

can be rearranged to read 
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2 2 2k 2 2[ 
ex (1-ta ) (~..a ) (1 ..a2k+2) (1 -tet2k+4) + o:2k+2 { (1 ..a2k+2) k2ex2 _ _3-

(1..a2) 

(4k+5)k(k+l) 

-k(1-ta2k+4) k(1-Ct2)+~] ~ 4k(k+1)ex2(1-Ct2k+2) 

(8. 56) (l-CX
2

) 

+ (1 ..a2k+2)
2 

(l-Ct2k) kex
4 

'k __ 2~1 + (1 -CX2k+2)(1 -CX2k) 4(k+l'p
2 

(1-ta
2 

_kef) 

l-Ct2 \ 1-CX2 l-CX2 h...a2 

and hence [ (1...cx2 ) (1...cx2k+2 )] - 2 times (8. 56) is the coefficient of f
111 

in (8.45). 

The remaining terms inside the square brackets of (8.44) are 

k 

f121 I 
m==1 

(8. 57) 

I [O"imJD-+1 01 j+cri 01 m+ 1Cfmj] [ (.a )i +j ...cx2k+2 (-ex )i-j ~2k+2 (-ex )j -i 

i.:~j==l 

4k+4 ( ) =i-j J + ex -ex 

where we used that 
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(8. 58) 

(8. 59) 

These expressions are e-valuated as was (8. 45 ). Finally we obtain for 

(8.44) the expression 

v = 

(8. 60) 

1 

a3 
2 

(l.a2k+2)2 (l.a2k)+(..a)2k+3A21+(-a:)4k+3~2 } 
(l.a2) 
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where .t\l and ~2 are easily recognized in (8.56) and 

(8. 61) 

(8.62) 

+ (1~2k) 4(k+;)
2 ~ 

l...CX 

(-
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(8 • .63) 

(8. 64) 

(8.65) 

(8.66) 

4.k+4 ( 2k (k ) 2 } 
3k- ~.) +(l..a )l3k(k+l)+(l..a) +l.Ci ( 4 

l.J:X2 l..CX2 

- (l-CX2k+2) (l.£\::2k) 3k(k+l) 
l..CX2 ' 

+ (l..a2k+2) {cl+o?k+2) 4k(k+l)a2 + (l..a2k) k(k+l)a4 
l..CX2 l..CX2 

~3 == 4k(k+l)
2 

' 
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(8. 67) 

(8.68) 

2 
- (1..a2k+2) (1...0:2k) 3 (k+1) ~ 

1..a2 

2 
A

43 
= 4k(k+1) • 

By operating with these components one obtains the form 

(8.69) 

where 

(8. 70) B
1 

= (1..a2k+2 ){k(k+1)(14a2 =k.CX
2+k)+(1..a2k) 'JY-

2 

2 
[k(1..a2 )(1-'JY-

2
-2k)+3 

(1..a2) 

- 1CP
2 

+5et
4 

+ (1-et4 )]- (1 -ta
2

k+
4

) 5 k(k+ 1) (2k+1) (1...a
2 

)} 
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+ (1 +a2k+2) 2 (k+1Jx\3k(1..a
2 

)-4] + (1 ..a2k+4 )l.1a4 2 (1-k)+k.CX
2 

(3 ..a
2

) 

1..CX2 (1..a2) 2 

+ (1~2k+2)(1~2k+4) a2 (1~2 )} 
1..CX2 

2, 2) 2 } zy,2 (k+ 1) 3k.CX (1..0: 2 -?f:X -1 ' 
1..0: 
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' (8. 71) 

+ (1..a
2

k+
2 )f 1

2 2 [ (1..a
2

)8kCX
2

-2(k+1)(1..a
2

)(k(1-9cf)+2k(1-ta
2
/) 

1 (1..0: ) 

+ 2kof(l4X2)2(l4X2)3 ~212k+(k+l) 8k;5)-(l-a2)3 

2k+4 2 { (k 1 )
2 

2 (k 1 v-v
2 2ci 2 )\ 

+ (1..0: )2k(1..0: ) = + + - fV" - -"""";2~2 (k(1..0: )+2 ~ 
2 1..0:2 (1.a ) J 
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+ 

(l...a2k) (l-+a:2k+2 ) { 2 2 2 2 2k 2 2 4} + - .... 4(k+l) (1-a) a +(1-+a: )4(k+l) (l...a )a· , 
(l-CX2k+2) 

2 

+ 

This completes the proof that (4.31) is given by (4.21). Q.E.D. 

8.5 Proof of Corollary 4.7 (Section 4.3). 

From (8. 42) we have that 

(8. 73) 
A = (l-CX2k+2 ) ~2k+2(l-+a:2)-(l-+a:2k+2)(l-+a:2k+4) 

k [ (l...cx2k+2) (l-+a:2k+4)-2(k+ 1 )a2k+2 (l-CX2) J 
2 
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so that 

Substituting in (4.21) or (8.69) we have that 

which is (4.32). ~.E.D. 

-1 
[1-2ifk+2+o (cx2k)] +O (cx2k) 
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9. MATHEMATICAL DETAILS CORRESPONDING TO CHAPTER 5. 

9.1 Proof of Theorem 5.3 (Section 5.2). 

Letting r:i = 1 without loss of genera.l.:l..ty;~ and using that 

we find that for i;~ j :;:: 2 

(9.1) a. . = lim..... eu. u 0 

lJ T~oo l J 
a +a +~ +a 
ijl ij2 ~ij3 ij4 ' 

where 

(9. 2) 

aij2 = ( -Ci )i2if + (..a) i -l (l-ta2 )2CX(1-ta2 ) 

(9.3) =2 (-a )i (l-ta2 -t{X4) 
J j=2, (i ~ 1) 

(-a )i -1 (1 +cf )cx2 = (..a)i+l(l-ta2) j=3; (i ~ l) 

aij3 = -2 (..a )j (l +cE+C}·) 
J i=2, (j ~ 1) 

(9.4) 
(-a )j+l (1 +cE) 

' i=3, (j :::. 1) 
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aij4 = 1+4cf+c}· 
' 

i=j=2,3, ..• ,k, 

(9. 5) = 2CX(l +cf) 
' 

l'i-jl=l, i,j=2, .•. ,k, 

2 
= ex ' li-jl=2, i,j=2, .•• ,k, 

a .. = o, 
~JS 

otherwise . 

To evaluate for j ~ 2 we use (5.14). Combining 

these results we find out that the a.. are given by (5.21) with a .. 1 , 
~J ~J 

and defined above holding also for the case of i or j 

equal to 1. That is why we included the value of l in the ranges of 

(9. 2), (9. 3) and (9. 4) above. 

(g. 7) 

Then 

We further approximate as in (4.41) 

ij 
cr 

k 
[ 

(..a )j -i (l...CX2i) 

l...CX2 

is tj 

s,t=l 
cr a cr st 

j=l,2, .•• ,k, 

j > i 0 



+ ~ (...a)i+j[ (-2)(1+cf+a4) r (...alcriscr2j 
i,j=1 S=1 

+ (...ct)(1+if) I (...a)scris~j 
S=1 

(9.8) + (-2)(1~2~4) E (...a)tcri2crtj 
t=1 

+ (...ct)(1+cf) I (...a)tcri3crtj 
t=1 

4 k k-1 k-2 
+ (1 +4cf+cx ) L D D +4CX(1 +ex

2
) '\ D D 1+2cf r D D 2] ' 

s=2 s s s:2 s s+ s=2 s s+ 

where as shown in (4.42) 
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(9. 9) 

Then 

a2 (1 +4ci+a4) 

(1-cf )3 + (1-Cl )2 
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(9.10) 

which is equivalent to (5.24). Q.E.D. 
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APPENDIX A 

A. The Finite Autoregressive Representation for q > 1 (Section 1.2). 

In Section 1.2 we derived the exact representation (1.17) when q=l. 

We want to extend that result here. 

For general q we proceed along the same lines. From (1.1) by 

successive substitution, we have 

(A.l) 

= y ~ Ci y + [c.::a ) ( .::CX ) + ( .::CX )] E +• • • 
t 1 t=l 1 1 2 t-2 

It is then clear that at stage k (k = 0,1, •.. ) we have an expression of 

the form 

substituting from (1.1) and (A.l) above yields 

(A.3) E = y + (-Ci )E +•••+ (.::ct )E J 

t-k-1 t-k-1 1 t-k~2 q t-k-1-q 

we see that 
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j 1, 2, ••• ) q-1 ' 

(A. 4) 

These recursive relations are the same as the ones obtained by analysing in 

like manner the autoregressive model; see Anderson [ (197la), p. 168]. 

Hence the alternative representation of (1.1) is 

(A. 5) 
k 

E 'Y·Yt-· 
j=O J J 

where the coefficients satisfy (A.4). Denoting as before 

(A. 6) 

we verify easily that 

(A. 7) 

E -t 

for all relevant t and k. We compute the variances and covariances as 

follows: 

14l 



~E* E* = ~[E - f 8 E ][E [ 0 E l t,k t+s,k t j=:l. j~k+l t-k-j 't+s - j=l j,k+l t+s-k-j 

(A. 8) 

+ I [ tL k ~ ~So , k · 1 e Et k · Et k · , J, +~ J , T - =J +s- -J j=l j'=l 

The independence of the Et's implies that 

(A. 9) 

(A. 10) 

(A.ll) 

e'E E 
<e t t+s-k-j 

~Et k .Et k ., - -J +s- =J 

2 
(} J s 0 j 

2 = ()'" ) s = k+j ' 

s -k=j ' 

2 = u J 

and equal to 0 in the other cases, respectively. 

When s = 0 we are left with 

(A. 13) rr
2 (1 + I B~.k+l) ' 

j=l ' 

1~2 



and, as in the case of q = 1, Var(E~,k) ~ Var(Et)o 

2 For s f. o, (A.lO) gives rise to a contribution of ~o- os=kyk+l' 

provided that l :s_ s=k :s_ q (i.e., k+l :s_ s :£ q+k); (Aoll) gives rise 

2 to a contribution of ~0"' o , provided that l :£ -s ~k ::::_ q (i.e o , -s-k,k+l 

k+l ::S:. -s ~ q+k); finally (A.l2) gives rise to a contribution provided 

that l S s+j :S, q (which implies that j ::S q-s; also s = j-j' implies 

that I sl :S, q-1). 

For q > l it then turns out that the final expression for (A.8) 

is: 

2 q-1 s I 
o- !: 5 o I I , I s I = 1, 2, • 0 • , q -1 , j ' k+ l j - s .'1 k+ l j=l 

(A.l4) - cr
2a

1 
I . Is I k+ 1,. 0 •• q+k . s -k,k+l ~ ' " 

0 , otherwise , 

with the convention that if q=l ~ k+l, the first two expressions must be 

added to give the covariance of lag s, when s ranges over the set of 

integers such that q-1 2:, k+l. In general we are interested in values of 

k very large compared with qo 

With the kind of notation introduced in (1. 22) through (1. 25) for the 

case where t ranges in the set {l,2, .•• ,T}, we now write 
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(A.l5) 

Its covariance matrix is of order [T+l~(k+q)] with ~ErkEjk as components. 

The diagonal components of this matrix are nonzero and the components within 

q-1 of the main diagonal are nonzero; the other nonzero components are 

from k+l to k+q_ positions above <E>nd below the main diagonal. If k is 

increased the gaps between the three sets of nonzero components are increased. 

For the sake of completeness we write (A.l4) in matrix form, using 

matrices of order [T+l~(k+q)] defined in (1.25): 

(A.l6) 
. 2 q=l 
+()" l 

S=l 

q-k 

2 
S=k+.l 

We conclude that the general moving average (1.1) of order q has 

a representation as an autoregression of order k given by (A. 5) ~ ·where 

the error term has zero expectation a.'1d the covariance structure 

(A. 16). In the general case.9 from (A. 5) we have that 
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(A.l7) 

and the mean-square representation 

(A.l8) 

2 ~ 2 
o- L 6.k+l' . 1 J, J= 

will be proved if L S=l o~,k+l converges to zero as k ~oo. This is shown 

to be true in Anderson [(197la), pp. 168-70]. Hence we conclude that the 

moving average (1.1) is equivalent (in mean-square) to the infinite auto-

regression (A. 18). 

Notice that 5 · k+l ~0 implies that the co variances in (A.l4) tend 
JJ 

to zero and the variance in (A.l3) to 2 k tends to which (J' j as oo, 

provides another way of interpreting the transition from the finite 

representation (A. 5) to the infinite one (A.l8). 



REFERENCES 

Anderson, T.W. (197la), The Statistical Analysis of Time Series, John 
Wiley and Sons, Inc., New York. 

Anderson, T. W. (197lb), 11 Estimation of covariance matrices with linear 
structure and moving average processes of finite order", Stanford 
Univ., Stat. Dept. 

Anderson, T. W. (1973) .' 11 Asymptotically efficient estimation of covariance 
matrices with linear structure11

, The Annals of Statistics, ~' No. 1, 
135-141. 

Berk, K.N. (1974), 11 Consistent autoregressive spectral estimates", The 
Annals of Statistics, ~ No. 3, 489-502. 

Berk, K. N. (1973), 11 A central limit theorem for m=dependent random 
variables with u.nbounded m11

, The Annals of Probability, ~' No. 2, 
352-354. 

Box, G.E.P. and G.M. Jenkins (1970), Time Series Analysis Forecasting 
and Control, Holden-Day, Inc., San Francisco. 

Clevenson, M.L. (1970), "Asymptotically efficient estimates of the 
parameters of a moving average time series 11

, Stanford University, 
Stat. Dept. 

Durbin, J. (1959), "Efficient estimation of parameters in moving~average 
models", Biometrika, 46, 306=316. 

Durbin, J. (1961), 11 Efficient fitting of linear models for continuous 
stationary time series from discrete data11

, Bulletin of the Inter­
national Statistical Institute, 38, 273=282. -

Dzhaparidze, K. 0.. (1970), 11 On the estimation of the spectral parameters of 
a Gaussian stationary process with rational spectral density", Theory 
of Probability and its Applications, 15, 531-538. 

Hannan, E.J. (1960), Time Series Analysis, Methuen and Co. Ltd., London. 

Hannan, E.J. (1969), 11 The estimation of mixed moving average auto­
regressive systems", Biometrika, 56, 579=593· 

Hannan, E.J. (1970), Multiple 'I'ime Series, John Wiley and Sons, Inc., 
New York. 

146 



Ibragimov~ I. A,. (1967 ) 9 "On the maximum likelihood estimation of 
parameters of the spectral density of stationary time series", 
Theory of Probability and its Applications, 12J 115 =119. 

Loeve) Michel (1963), Probabi.li ty Theory (3rd Edition), D. Van Nostrand 
Co., Inc., New York. 

' McClave, J.T. (1973) 3 non the bias of autoregressive approximations to 
moving averages", Biometrika~ §2; 599-605. 

Mentz, R. P. (1972), "On the inverse of some covariance matrices of Toepli tz 
t;ype", Statistics Department, Stanford University. 

Nicholls, D. F. , A. R. Pagan.9 and R. D. Terrell (1973), 11 The estimation and 
use of models with moving average disturbance terms~ A survey", 
Australian National University. 

Parzen, E. (1971), 11 Some recent advances in time series analysis 11
, 

Statistics Department, Stanford Universit;y·. 

Pierce, D.A. (1970)J "A duality between autoregressive and moving 
average processes concerning their least squares parameter 
estimates", A.Ylnals of Mathematical Statistics:; 41, 422=426. 

Rao, C.R. (1965), Linear Statistical Inference and Its Applications, 
John Wiley and Sons, Inc., New York. 

Walker, A.M. (1961), 11 Large sample estimation of parameters for moving= 
average models", Biometrika, 48, 343-357. 

Walker, A.M. (1964), 11 Asymptotic properties of least-squares estimates of 
parameters of the spectrum of a stationar-y non-deterministic time­
series", The Jou.rnal of the Australian Mathematical Society_, !±_, 363-384. 

Whittle, P. (1951), Huothesis Testing in Time Series Analysis, Almkvist 
and Wicksel.ls, Uppsala. 

Whittle, P. (1952), "Some results in time series a...naly·sis", Ska:ndin~visk 
Aktuarietidskrift, 12.' 48-60. 

Whittle, P. (1953), 11 Estimation and information in stationary time series", 
Arkiv for Matematik, g,, 423-434. 

Whittle, P. (1961), 11 Gaussian estimation in stationary time series", 
Bulletin of the International Statistical Institute", 33rd 
Session, l-26. 

Wilson.? G. (1969), 11 Factorization of the covariance generating function of 
a pure moving average process", SIAM Journal of Numerical Analysis, 
£, l-7. 

Wold, H. (.1954), A Study in the Analysis of Stationary Time Series (Second 
Edition), Almqvi.st and Wicksells..'l Uppsala. 



TECHNICAL REPORTS 

OFFICE OF NAVAL RESEARCH CONTRACT N00014-67-A-Oll2-0030 (NR-042-034) 

l. "Confidence Limits for the Expected Value of an Arbitrary Bounded Random 
Variable with a Continuous Distribution Function," T. W. Anderson, 
October 1, 1969. 

2. "Efficient Estimation of Regression Coefficients in Time Series," T. W. 
Anderson, October 1, 1970. 

3. "Determining the Appropriate Sample Size for Confidence Limits for a 
Proportion," T. W. Anderson and H. Burstein, October 15, 1970. 

4. "Some General Results on Time-Ordered Classification," D. V. Hinkley, 
July 30, 1971. 

5. "Tests for Randomness of Directions against Equatorial and Bimodal 
Alternatives," T. W. Anderson and M. A. Stephens, August 30, 1971. 

6. "Estimation of Covariance Matrices with Linear Structure and Moving 
Average Processes of Finite Order," T. W. Anderson, October 29, 1971. 

7. "The Stationarity of an Estimated Autoregressive Process," T. W. 
Anderson,.November 15, 1971. 

8. rion the Inverse .of Some Covariance Matrices of Toepli tz Type," Raul 
Pedro Mentz, JUly 12, 1972. 

9. "An Asymptotic Expansion of the Distribution of "Studentized" Class­
ification Statistics," T. W. Anderson, September 10, 1972. 

10. "Asymptotic Evaluation of the Probabilities of Misclassification by 
Linear Discriminant Functions," T. W. Anderson, September 28, 1972. 

11. "Population Mixing Models and Clustering Algorithms," Stanley L. 
Sclove, February 1, 1973. 

12. "Asymptotic Properties and Computation of Maximum Likelihood Estimates 
in the Mixed Model of the Analysis of Variance," John James Miller, 
November 21, 1973. 

13. "Maximum Likelihood Estimation in the Birth-and-Death Process," Niels 
Keiding, November 28, 1973. 

14. "Random Orthogonal Set Functions and Stochastic Models for· the Gravity 
Potential of the Earth," Steffen L. Lauritzen, December 27, 1973. 

15. "Maximum Likelihood Estimation of Parameters of an Autoregressive 
Process with Moving Average Residuals and Other Covariance Matrices 
with Linear Structure," T. W. Anderson, December, 1973. 

16. "Note on a Case-Study in Box-Jenkins Seasonal Forecasting of Time Series," 
Steffen L. Lauritzen, April, 1974. 



TECHNICAL REPORTS (continued) 

17. "General Exponential Models for Discrete Observations, 11 

Steffen L. Lauritzen, May, 1974. 

18. "On the Interrelationships among Sufficiency, Total Sufficiency and 
Some Related Concepts," Steffen L. Lauritzen, June, 1974. 

19. "Statistical Inference for Multiply Truncated Power Series Distributions," 
T. Cacoullos, September 30, 1974. 

Office of Naval Research Contract N00014-75-C-0442 (NR-042-034) 

20. "Estimation by Maximum Likelihood in Autoregressive Moving Average Hodels 
in the Time and Frequency Domains," T. W. Anderson, June 1975. 

21. "Asymptotic Properties of Some Estimators in Moving Average Models," 
Raul Pedro Mentz, September 8, 1975. 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (ll'toiN'I DOll• &.toted) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM I. REPORT NUMBER r· GOVT ACCIESIIION NO. 3. RECIPIENT'S CATALOG NUMBER 

21 
... Tl TL E (end Sul>lltl") 5. TYPE OF REPORT & PERIOD COVERED ASYMPTOTIC PROPERTIES OF SOME ESTIMATORS IN Technical Report MOVING AVERAGE MODELS 

•• P!EAI"ORMING OIIIG. I'IEPORT NUMBER 

7. AUTHOR(a) •• CONTJIIACT OR GIIIANT NUMBER(e) 

" Raul Pedro Mentz N00014-75-C-0442 
9. PERFORMING ORGANIZATIO~l NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA 6 WORK UNIT NUMBERS Department of Statistics (NR-042-034) Stanford University 

8tanf'ord Jlali:furnia. G4'SO"i 
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research September 8, 1975 Statistics and Probability Program Code 436 13. NUMBER OF PAGES Arlington, Virginia 22217 147 
14. MONITORING AGENCY NAME Ill AODRESS(II dllletenlltOifi Controlllnlf Olllee) us. SECURITY CLASS. (ol thla report) 

Unclassified 
USe. f~.fft~f![ICATION/DOWNORADING 

115. DISTRIBUTION. STATEMENT (of thl& Report) 

Approved for public release; Distribution Unlimited. 

~ 

17. OISTFIIEIUTION STATEMENT (of the abstract ""t&red In Block 20, II dl!lerenl It,... Report) 

ill. SUPPL EM lENT ARV NOTES 

19. 

20. 

DD 

KEY WORDS (Continuo on "•'"'""" side II "'"""eemy Ollld Identity lly block number) 

moving average model, Walker's method, Durbin's method, 
consistency, asymptotic normality 

AIIISTRACT (Contlnu" on revere<> 111fds It """""•_, 1/Jtfid ldontlly ,,. ltloclr -hr) 

We consider estimation procedures for the moving average model of order q. Walker's method uses k sample autocovariances (k 2 q). We let k depend on T in such a way that k -7-00 as T -+ oo. The estimates are consistent, asymptotically normal and asymptotically efficient if k = k(T) dominates log T and is dominated 1y T2 • The approach in proving these theorems 

FORM 
I JAN 73 1473 EDITION OfF I NOV 11111111 OI!ISOLII!Til 

S/N 0102•014•6t!i01 I 

involves obtaining an explicit 

Unclassified 



UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS PAGE (lnoDft Dete Bftlerecf) 

form for the components of the inverse of a symmetric matrix with 
equal elements along .its five central diagonals, and zeroes else­
where. The asymptotic normality follows from a central limit 
theorem for normalized sums of random variables that are dependent 
of order k, where k tends to infinity with T. An alterna~ 
tive form of the estimator facilitates the calculations and the 
analysis of the role of k, without changing the asymptotic 
properties. Durbin's method is based on approximating the moving 
average of order q by an autoregression of order k (k > q). 
We derive the probability limit and the variance of the liilli ting 
normal distribution of the estimator, and compare them with the 
desired values: the parameters of the model and the asymptotic 
variance of the maximum likelihood estimator. The differences 
turn out to be exponentially decreasing functions of k. A modi­
fication of Durbin's proposal by Anderson is studied in detail. 

UNCLASSIFIED 




